Handout 16 (Part 4)

Local and Global Variables & Constants
Example: What is the output of the following:

#include <iostream>

using namespace std;

int A = 5; // A is a global variable.

void MyFunction();

int main()

{

cout << "A = " << A << endl;

MyFunction();

return 0;

}

void MyFunction()

{

// A is visible in this function.

cout << "A = " << A << endl;

}

Answer:

A = 5

A = 5

#include <iostream>

using namespace std;

int A = 5; // A is a global variable.

void MyFunction();

int main()

{

cout << "A = " << A << endl;

MyFunction();

return 0;

}

void MyFunction()

{

int A = 9; // The global A is no longer visible here, because

 // this function has a local variable of the same name.

// Thus, this function will know nothing about A outside.

cout << "A = " << A << endl;

}

Answer:

A = 5

A = 9

#include <iostream>

using namespace std;

int A = 5; // A is a global variable.

void MyFunction();

int main()

{

cout << "A before: " << A << endl;

MyFunction();

cout << "A after: " << A << endl;

return 0;

}

void MyFunction()

{

A = A + 100;

}

Answer:

A before: 5

A after: 105

#include <iostream>

using namespace std;

int A = 5; // A is a global variable.

void MyFunction();

int main()

{

cout << "A before: " << A << endl;

MyFunction();

cout << "A after: " << A << endl;

return 0;

}

void MyFunction()

{

int A = 9;

A = A + 100;

}

Answer:

A before: 5

A after: 5

#include <iostream>

using namespace std;

int A = 5; // A is a global variable.

void MyFunction(int A);

int main()

{

cout << "A before: " << A << endl;

MyFunction(A);

cout << "A after: " << A << endl;

return 0;

}

void MyFunction(int A)

{

A = A + 100;

}

Answer:

A before: 5

A after: 5

#include <iostream>

using namespace std;

int A = 5; // A is a global variable.

int MyFunction(int X);

int main()

{

cout << "A before: " << A << endl;

A = MyFunction(A);

cout << "A after: " << A << endl;

return 0;

}

int MyFunction(int X)

{

X = X + 100;

return X;

}

Answer:
A before: 5

A after: 105

#include <iostream>

using namespace std;

int A = 1, B = 2; // A and B are global variables.

/* A and B will be visible in any function except if the function has a variable or a parameter with the

same name. If a global variable, say R, is visible in a function, then changing the value of R in the function changes its value globally and if the value of the global R is changed anywhere, then it will be changed in the function.

*/

void Function1();

void Function2(int T);

int main()

{

int A = 3, C = 4;

return 0;

}

void Function1()

{

int C = 5, D = 6;

}

void Function2(int A)

{

int D = 7, E = 8;

A = 9;

}

Remarks about the previous program:

Function main:

1. Global A is no longer visible in function main, because function main has a local variable with the same name. Thus, the value in A in main is 3. Also, changing A in main will not change global A and vice versa. No other function will know the value of A in main or can change it except if A was passed as a reference argument to that function.

2. Global B is visible in function main. Thus, the value of B in main is 2. Also, changing B in main will change the value of B globally and vice versa.

3. Variable C in main is local to main. No other function will know the value of C in main or can change it except if C was passed as a reference argument to that function.

4. Function main does not know the values of variables C and D in Function1 and variables D and E in Function2. It can't change their values except if they were passed to it as reference arguments.

5. Function main knows nothing about parameter A in Function2. Function main can change the value of A in Function2 only if it was passed to it by Function2 as a reference argument.

Function Function1:

1. Global A and B are both visible in Function1. Thus, the value of A in Function1 is 1 and the value of B there is 2. Also, changing B in Function1 will change the value of B globally and vice versa. The same thing can be said about A.

2. Local variables C and D in Function1 are visible only in Function1. No other function will know the value of C or the value of D in Function1 or can change them except if they were passed as reference arguments to that function.

3. Function1 knows nothing about variable D in Function2 and will have nothing to do with it. Thus, the value of D in Function1 is 6. Function1 can change the variable D of Function2 only if Function2 passed D to Function1 as a reference argument. Function1 knows nothing about variable E in Function2 and will have nothing to do with it. Function1 can change the variable E of Function2 only if Function2 passed E to Function1 as a reference argument. Function1 knows nothing about variable C in main and will have nothing to do with it. Function1 can change the variable C of main only if main passed C to Function1 as a reference argument.

4. Function1 knows nothing about parameter A in Function2. Function1 can change the value of A in Function2 only if it was passed to it by Function2 as a reference argument.

5. Function1 knows nothing about variable A of function main. Function1 can change the value of A in main only if it was passed to it by main as a reference argument.

Function Function2:

1. Global B is visible in Function2. Thus, the value of B in Function2 is 2 . Also, changing B in Function2 will change the value of B globally and vice versa.

2. Local variables D and E in Function2 and parameter A are visible only in Function2. No other function will know the value of D or the value of E or the value of A in Function2 or can change them except if they were passed as reference arguments to that function.

3. Function2 knows nothing about variable D in Function1 and will have nothing to do with it. Thus, the value of D in Function2 is 7. Function2 can change the variable D of Function1 only if Function1 passed D to Function2 as a reference argument. Function2 knows nothing about variable C of main and Function1 and about variable A in main and about global A. It can change their values only if they were passed to it as reference parameters.

Note: Similar thing to what we said about local and global variables applies to local and global constants.

Remark:

If A is a global variable and function MyFunction has a local variable or a parameter whose name is A, then to access the global A, you use ::A. In other words, you attach :: to the beginning of the variable.

1
4

