Handout 16 (Part V)

More on Local and Global Variables & Constants

Recursive Functions

Example on local and global variables:

#include <iostream>

using namespace std;

int A = 1, B = 2; // A and B are global variables.

/* A and B will be visible in any function except if the function has a variable or a parameter with the

same name. If a global variable, say R, is visible in a function, then changing the value of R in the function changes its value globally and if the value of the global R is changed anywhere, then it will be changed in the function.

*/

void Function1();

void Function2(int T);

int main()

{

int A = 3, C = 4;

return 0;

}

void Function1()

{

int C = 5, D = 6;

}

void Function2(int A)

{

int D = 7, E = 8;

A = 9;

}

Remarks about the previous program:

Function main:

1. Global A is no longer visible in function main, because function main has a local variable with the same name. Thus, the value in A in main is 3. Also, changing A in main will not change global A and vice versa. No other function will know the value of A in main or can change it except if A was passed as a reference argument to that function.

2. Global B is visible in function main. Thus, the value of B in main is 2. Also, changing B in main will change the value of B globally and vice versa.

3. Variable C in main is local to main. No other function will know the value of C in main or can change it except if C was passed as a reference argument to that function.

4. Function main does not know the values of variables C and D in Function1 and variables D and E in Function2. It can't change their values except if they were passed to it as reference arguments.

5. Function main knows nothing about parameter A in Function2. Function main can change the value of A in Function2 only if it was passed to it by Function2 as a reference argument.

Function Function1:

1. Global A and B are both visible in Function1. Thus, the value of A in Function1 is 1 and the value of B there is 2. Also, changing B in Function1 will change the value of B globally and vice versa. The same thing can be said about A.

2. Local variables C and D in Function1 are visible only in Function1. No other function will know the value of C or the value of D in Function1 or can change them except if they were passed as reference arguments to that function.

3. Function1 knows nothing about variable D in Function2 and will have nothing to do with it. Thus, the value of D in Function1 is 6. Function1 can change the variable D of Function2 only if Function2 passed D to Function1 as a reference argument. Function1 knows nothing about variable E in Function2 and will have nothing to do with it. Function1 can change the variable E of Function2 only if Function2 passed E to Function1 as a reference argument. Function1 knows nothing about variable C in main and will have nothing to do with it. Function1 can change the variable C of main only if main passed C to Function1 as a reference argument.

4. Function1 knows nothing about parameter A in Function2. Function1 can change the value of A in Function2 only if it was passed to it by Function2 as a reference argument.

5. Function1 knows nothing about variable A of function main. Function1 can change the value of A in main only if it was passed to it by main as a reference argument.

Function Function2:

1. Global B is visible in Function2. Thus, the value of B in Function2 is 2 . Also, changing B in Function2 will change the value of B globally and vice versa.

2. Local variables D and E in Function2 and parameter A are visible only in Function2. No other function will know the value of D or the value of E or the value of A in Function2 or can change them except if they were passed as reference arguments to that function.

3. Function2 knows nothing about variable D in Function1 and will have nothing to do with it. Thus, the value of D in Function2 is 7. Function2 can change the variable D of Function1 only if Function1 passed D to Function2 as a reference argument. Function2 knows nothing about variable C of main and Function1 and about variable A in main and about global A. It can change their values only if they were passed to it as reference parameters.

Note: Similar thing to what we said about local and global variables applies to local and global constants.

Remark:

If A is a global variable and function MyFunction has a local variable or a parameter whose name is A, then to access the global A, you use ::A. In other words, you attach :: to the beginning of the variable.

Recursive Functions

Why are recursive functions useful?

Answer: They shorten the program and make it easier to read and understand.

I'll present 4 examples on recursive functions; Factorial, Sum from 1 to N, xN, where N is a positive integer and x is a real number, and a sequence defined recursively.

Example 1:

Non-recursive Factorial (computes M!):

long Factorial(long M)

{

long I = 1, P = 1;

while (I <= M)

{

P = P * I;

I++;

}

return P;

}

Recursive Factorial (computes M!):

long Factorial(long M)
// Line 1

{

// Line 2

if (M == 1)
// Line 3

return 1;

// Line 4

else

// Line 5

return M * Factorial (M - 1);
// Line 6

}

// Line 7

Comments About the recursive Factorial function:

1. The case when M = 1 (Lines 3 and 4) is called the base case. Every recursive function must have a base case. The other case (Lines 5 and 6) is called the general case or the recursive case. Every recursive function must have a recursive case.

2. As an example, take M = 3. Notice that Factorial(3) = 3 * Factorial(2) and Factorial(2) = 2 * Factorial(1) and Factorial(1) = 1. Thus,

Factorial(3) = 3 * Factorial(2) = 3 * (2 * Factorial(1)) = 3 * (2 * 1) = 6.

Hence, to compute Factorial(3), the function asks for Factorial(2) and Factorial(2) asks for Factorial(1) which is 1.

Example 2:

Non-Recursive Sum (computes the sum of the integers from 1 to M where M is an integer):

long Sum(long M)

{

long I = 1, P = 0;

while (I <= M)

{

P = P + I;

I++;

}

return P;

}

Recursive Sum (computes the sum of the integers from 1 to M where M is an integer):

long Sum(long M)

{

if (M == 1)

return 1;

else

return M + Sum(M-1);

}

Example 3:

Non-recursive Power (computes X^N, where X is a nonzero real number and N is a positive integer):

double Power(double X, long M)

{

double P = 1;

long I = 1;

while (I <= M)

{

P = X * P;

I++;

}

return P;

}

Recursive Power (computes X^N, where X is a nonzero real number and N is a positive integer):

double Power(double X, long M)

{

if (M == 1)

return X;

else

return X * Power(X,M-1);

}

Question: How can you modify the previous function to work also for negative exponents and for the 0 exponent?
Answer:

double Power(double X, long M)

{

if (M == 0)

return 1;

else if (M < 0)

return 1.0/Power(X,fabs(M));

else

return X * Power(X,M-1);

}

Example 4: Recursive computation of the Nth element of the sequence

A1 = 1, An = 2 An-1 + 1 for n > 1.

long A(long N)

{

if (N == 1)

return 1;

else

return 2 * A(N-1) + 1;

}

Question: Can recursive functions be void?

Answer: Yes.

Exercise: Write the previous 4 recursive functions as recursive void functions.

Exercise: Write a recursive value returning function, call it GCD, to compute the greatest common divisor of two positive integers and then write a recursive void function to do the same thing.

Exercise: Write a recursive function and a non-recursive function to compute the Nth element of the sequence: Ai = 2 Ai-1 - 5 Ai-2 + 5 i, i > 1, A0=A1=1.

1
1

