Handout 14

The do while Loop (Page 423)

Used for loops that execute at least once. This is why the loop repetition test (I mean TestExpression) is at the bottom of the loop (remember for the while loop, the loop repetition test is at the top of the loop). So, the TestExpression is evaluated at the end of the loop.

Syntax:

do

Statement (or Compound Statement)

while (TestExpression);

Remark: Notice there is a semicolon at the end.

It means:

1. Execute Statement (or Compound Statement)

2. Evaluate TestExpression

3. If TestExpression evaluates to true, then

Go to Step #1.

Otherwise

Move to the first statement that follows the do loop.

Example: Find the output of:

int I,J,K;

I=0;

do

{

J = I * I * I;

cout << I;

do

{

K = I + 2 * J;

cout << J << K;

J = J+2;

}

while (K <= 10);

cout << endl;

I++;

}

while (J <= 5);

0002448612

Example (Factorial using for Loop):

int i, Factorial = 1;

for (i=1; i <= n; i++)

Factorial = Factorial * i;

cout << Factorial << endl;

Example (Factorial using while Loop):

int I = 1; Factorial = 1;

while (I <= N)

{

Factorial = Factorial * I;

// The body of the loop begins here.

I ++;

// You must increment I. The body of the loop ends here.

}

cout << Factorial << endl;

Example (Factorial using do while Loop):

int I = 1; Factorial = 1;

do

{

Factorial = Factorial * I;

// The body of the loop begins here.

I ++;

// You must increment I. The body of the loop ends here.

}

while (I <= N);

cout << Factorial << endl;

Example: Write a function to repeat (using a do while loop) doing the following

1. It asks the user to enter an integer (assume the number is read as a string).

2. If the number is octal (i.e. contains only digits 0..7), then it displays "Octal". If not, then it displays "Not Octal".
The switch Statement

Page 418 of the Textbook

Used to implement a multialternative selection statement in which exactly one of several alternative actions is selected and performed. In other words, it's used to select one of several alternatives. The selection is based on a variable (or expression) of type int, bool, or char.

Syntax:

switch (Selector)

{

case label_1 : Statement_1; break;

case label_2: Statement_2; break;

.

.

.

case label_n: Statement_n; break;

default: Statement_d; break;

}

Equivalent to:

if (Selector == label_1)

Statement_1;

else if (Selector == label_2)

Statement_2;

.

.

.

else if (Selector == label_n)

Statement_n;

else
// I.e. default

Statement_d;

Remarks:

1. Selector can be expression or a variable of type int or bool or char. It can't be of type float or string.

2. Label_i should be a (single) constant or a constant expression (E.g., something like 3+5*7 or 4+6*A, where A is a constant of the same type as the selector) of type bool or int or char. All labels should be of the same type and they should be of the same type as Selector.

3. Labels should be distinct.

4. Statement_i is either a single statement or a sequence of statements. The same thing can be said about Statement_d.

5. The default case is optional. It's as the else part of the if-else-if statement. It's executed if the value of the selector does not match any of the other labels. Usually, it's used for invalid input.

6. The purpose of using break is to quit the loop. The break statement is not necessary for the default case if the default case is at the end of the switch case statement.

7. The parentheses around Selector are necessary. Removing them will result in a syntax error.

8. If the value of the selector is not listed in any case label, then the default option will be executed. If there is no default option, then no option will be executed. Thus, to avoid logic errors, include a default option (except if all possible selector values are covered in the case labels).

9. The switch case statement is used to implement multiway branches. People usually use it for menu driven programs.

Here is what will happen when the switch statement is executed: The value of selector (if it's an expression, then it's evaluated first) is compared to the case labels. If the value of the selector is equal to one of the labels, say it's equal to label_i, then execution will begin with the first statement of Statement_i and continue until a break, exit, or a return statement is encountered (or until the end of the switch statement is encountered).

Example: A professor has the following grade scale (The grades are out of 10 and they are integers. Every grade must be between zero and 10):

10 or 9: A, 8: B, 7: C, 6: D, 0-5: E.

Write a program to read a grade (out of 10) and to display the corresponding letter grade.

Solution:

#include <iostream>

using namespace std;

int main()

{

int A;

cout << "Enter an integer grade between 0 and 10: ";

cin >> A;

switch (A)

{

case 10:

/* Line 10 */

case 9: cout << 'A' << endl;
/* Line 11 */

 break;

/* Line 12 */

case 8: cout << 'B' << endl;

 break;

case 7: cout << 'C' << endl;

 break;

case 6:
cout << 'D' << endl;

break;

case 0: case 1: case 2: case 3: case 4: case 5:

cout << 'E' << endl;

break;

default: cout << "Invalid Grade" << endl;
/* Line 22 */

}

return 0;

}

Remarks:

1. You can replace lines 10, 11 and 12 by:

case 10:
case 9:

cout << 'A' << endl;

break;

or by

case 10: case 9: cout << 'A' << endl; break;

or by

case 10: cout << 'A' << endl; break;

case 9: cout << 'A' << endl; break;

2. What will happen if you omit the break statement? Say you omitted the break statement at Line 12 and the input is 9. Then the output will be

A

B

3. Can you add a break statement for the default case or (the last listed label if there is no default case)? For example, can you add a break statement at the end of Line 22? The answer is yes, but there is no need to do that except if the default case is not the last case. If the default case is not the last case, then you'll have to include the break statement.

Problem: Modify the previous program to work on integer grades out of 100. Do not change the switch case part at all.

1
1

