Handout 21

Formatting the Output (pages 115-122)

Goal: to be able to control the width of the output for integers, reals, and strings and the size of the fractional part if the output is a real number.

Here are the functions we need for that:

1. The setw function: This function specifies the width of the output. It's used for the integer, real, and string data types. It is not used for the data type char. Here is an example on how to use this function:

Suppose that n is a variable of type int and suppose that n = 35. Then the output of the statement:

cout << setw(4) << n << endl;

is

((35

where (stands for the blank character.

Remark: Notice that if we replace the above output statement by

cout << n << endl;

Then the output will be

35

Notice that setw(4) means reserve 4 positions for the next output. If the size of the output is less than 4, then the remaining positions on the left are kept blank. If the size is greater than 4, then the number of positions is expanded to be the same as the size of the output.

Remarks about the setw function:

1. To use setw you must include the following line at the top of your program

#include <iomanip>

The setw function is defined in the above mentioned header file (I mean in iomanip).

2. The argument of the setw function (i.e. what's inside the parentheses) should be a nonnegative integer. This argument is called the fieldwidth.

3. The fieldwidth (i.e. the effect of a call to setw function) holds only for the very next item to be output. After that point the fieldwidth is set to zero (the default case) if there is no other call to the function setw. Fieldwidth of zero means extend the fieldwidth to exactly as many positions as needed for the output.

4. The function setw is used only for formatting numbers and strings not for the char data type.

5. If setw is used and if the fieldwidth is greater than the size of the output, then the next (to setw) data item to be output is printed right-justified (filled with blanks on the left to fill up the field).

6. If the number of positions required for the data item to be output is greater than the fieldwidth, then the fieldwidth expands to fit the data item (i.e. the fieldwidth becomes equal to the number of positions required for the output).

7. For real (floating-point) numbers, the decimal point is counted. For example, the number 2.3 requires 3 output positions not 2.

Example: Let x be a variable of type float and let x=2.34. Then the output of:

cout << setw(4) << x << endl;
// Statement 1.

cout << setw(2) << x << endl;
// Statement 2.

cout << setw(5) << x << endl;
// Statement 3.
is:

2.34

2.34

(2.34

Remarks about the example:

(a) (is used to represent the blank character.

(b) 2.34 requires 4 positions (do not forget to count the decimal point).

(c) In Statement 1, the fieldwidth is set to 4 which is exactly the number of positions required for the number.

(d) In Statement 2, the fieldwidth is set to 2 which is less than the number of positions required for the number. So, the fieldwidth is expanded to 4 (the same as the number of positions needed).

(e) In Statement 3, the fieldwidth is set to 5. The number occupied 4 of these positions (the 4 on the right) and one remained empty. Remember if the fieldwidth is larger than the number of positions required for printing the number, the number is printed right-justified.

Remarks:

1. If x is a real (floating-point) number and you set x = 13.0, then the output of the statement:

cout << x << endl;

is:

13

This means the decimal point is not displayed. That means if x is a real variable (i.e. of type float, double, or long double) and if the value of x is a whole (integer) number, then when you print that number, the decimal point is not printed.

To force the decimal point to be printed, use the function showpoint (included in iostream header file). Here is how to use it. Once again let x be a variable of type float whose value is 13.0. Then the output of the statement:

cout << showpoint << x << endl;

is:

13.0

So, it is no longer 13 because we've used showpoint to force the decimal point to be displayed.

2. Large real (floating-point) numbers are displayed in scientific notation. To force them to appear not in scientific form (i.e. in the decimal form, use the function fixed (contained in iostream header file)).

For example, if x is a variable of type double and if we set x = 3333333.0, then the output of the statement

cout << x << endl;

is

3.33333e+006

Notice that the output is in displayed in scientific notation in spite of the fact that it was assigned a value in the decimal form (i.e. not in the scientific form). To force x to be displayed in decimal form, do this:

cout << fixed << x << endl;

The output of the statement above is

3333333.000000

The above statement explains how to use the function fixed.

3. Question: suppose that x is a variable of type double and suppose that we set x = 3.3e4, will x be printed in scientific form if we have the following output statement?

cout << fixed << x << endl;

Answer: no, not necessarily. If you want to force a real number to be displayed in scientific form, then use the function scientific. For example, if x is a variable of type real and if you set x = 3.3e4, and you have the following output statement:

cout << scientific << x << endl;

Then the output will be

3.300000e+004

4. Suppose that you want a specific number of decimal places to be displayed in your output real numbers, then how to do that?

Answer: You can control the number of decimal places by using the setprecision function (the function is included in the header file iomanip). The argument of this function specifies the number of decimal places that will be displayed in the output. The way to use it is explained in the following example.

Example:
Let x be a variable of type float and let the value of x be 123.416, then the output of

cout << fixed << setw(9) << setprecision(4) << x << endl;

is

(123.4160

Notice that (is used to represent the blank character.

Remarks about the setprecision function:

1. The argument of the setprecision function specifies the number of decimal places that will be displayed.

2. Always use the fixed function before the setprecision function.

3. A call to the setprecision function remains in effect for all subsequent output until you change it by another call to setprecision.

4. If the argument of setprecision is less than the number of decimal places of the number, then the last displayed digit is rounded up.

5. If setprecision is used with the setw function (which is usually the case) and if after displaying the required number of decimal places (the decimal part is displayed first), there are no enough positions left the integer part of the number, setw expands to display the integer part of the number.

6. The argument of setprecision is a nonnegative integer.

7. The number is printed right-justified.

Example: Once again let x be a variable of type float and let the value of x be 123.416, then the output of

cout << fixed << setw(9) << setprecision(2) << x << endl;

is

(((123.42

Notice that we asked for 2 decimal places only to be displayed. But since our number has 3, then we approximate .416 by .42.

And the output of

cout << fixed << setw(9) << setprecision(1) << x << endl;

is

((((123.4

Notice that we asked for 1 decimal place only to be displayed. But since our number has 3, then we approximate .416 by .4.

And the output of

cout << fixed << setw(9) << setprecision(7) << x << endl;

is

123.4160000

Notice that we asked for 7 decimal places to be displayed. But since x has only 3, we fill the rest decimal positions with 0. After that we need a position for the decimal point. That leaves 1 position only for the integer part of x (i.e. for 123), because we have specified the fieldwidth to be 9. But, 3 positions are needed for the integer part of x. Thus, the fieldwidth is expanded to display the entire integer part.

PAGE
1

