Homework 1

Do either:

- No. 5 and (one of No. 1 and No. 2) and (one of No. 3 and No. 4).
 or
- No. 6. or.
- No. 7 and No. 8.
- 1. Implement a one-string DTM, M, whose Σ is $\{\triangleright, \sqcup, a, b, c\}$ and which replaces a by b if a is preceded by c and a by c if a is preceded by b. In all other cases, M keeps the symbol as it is.
- 2. Implement a one-string DTM, M, whose Σ is $\{\triangleright, \sqcup, a, b, c\}$ and which replaces a by b if a is followed by c and a by c if a is followed by b. In all other cases, M keeps the symbol as it is.
- 3. Implement a one-string NDTM, N, whose Σ is $\{\triangleright, \sqcup, a, b, c\}$ and which accepts only the language $L = \{x \in (\Sigma \{\sqcup\})^* \mid x \text{ does not contain at least one of a, b, c }\}$.
- 4. Implement a one-string NDTM, N, whose Σ is $\{\triangleright, \sqcup, a, b\}$ and which accepts only the languages

$$L_1 = \{(ab)^n (aba)^m \mid n, m \text{ are nonnegative integers}\}$$

and

$$L_2 = \{(aba)^i (ab)^j \mid i, j \text{ are nonnegative integers}\}.$$

5. Given the following one-string TM, M:

State k	input Symbol α	$\delta(k, \alpha)$
s	▷	$(s, \triangleright, \rightarrow)$
s	0	$(q_0, \alpha, \rightarrow)$
s	1	("no", 1, -)
s	α	$("no", \alpha, -)$
s	Ц	$("no", \sqcup, -)$
s	β	(q_2,β,\rightarrow)
q_0	0	$(q_0,0,\rightarrow)$
q_0	1	(q_1,β,\leftarrow)
q_0	β	(q_0,β,\rightarrow)
q_0	α	$("no", \alpha, -)$
q_0	Ц	$("no", \sqcup, -)$
q_1	0	$(q_1,0,\leftarrow)$
q_1	α	(s, α, \rightarrow)
q_1	β	(q_1,β,\leftarrow)
q_1	1	("no", 1, -)
q_1	Ц	$("no", \sqcup, -)$
q_2	β	(q_2,β,\rightarrow)
q_2	Ц	$("yes",\sqcup,-)$
q_2	α	$("no", \alpha, -)$
q_2	1	("no", 1, -)
q_2	0	("no", 0, -)

- Find the output corresponding to each one of the following input strings: 0011, 0110, 1101.
- $(s, \triangleright, 000111) \xrightarrow{M^{15}} (q, w, u)$, find q, w, and u.
- What is the language L that is accepted by M.
- 6. The following question has two parts:
 - Implement a one-string DTM and a two-string DTM whose alphabet is $\Sigma = \{ \triangleright, \sqcup, a, b, \alpha, \beta \}$ which accept only the language $L = \{ a^n b^n \mid n \in \mathbb{N} \}$.

- Notice that the input string x for the two-string DTM has to be on the first tape and the second tape has to be empty initially. You need to copy x on the second tape.
- Implement a one-string DTM, a one-string NDTM, and a two-string DTM whose alphabet is $\Sigma = \{ \triangleright, \sqcup, a, b \}$ which accept only the language $L = \{ (ab)^n \mid n \in \mathbb{N} \}$. Notice that the input string x for the two-string DTM has to be on the first tape and the second tape has to be empty initially. You need to copy x on the second tape.
- 7. Implement a one-string DTM and a two-string DTM whose alphabet is $\Sigma = \{ \triangleright, \sqcup, a, b, \alpha \}$ which accept only the language $L = \{ a^i b a^j \mid 0 \le i \le j \}$. Notice that the input string x for the two-string DTM has to be on the first tape and the second tape has to be empty initially. You need to copy x on the second tape.
- 8. Implement a one-string DTM and a two-string DTM whose alphabet is $\Sigma = \{ \triangleright, \sqcup, 0, 1 \}$ which accept only the language $L = \{ x \mid x \text{ starts with } 10 \text{ and ends with } 10 \}$. Notice that the input string x for the two-string DTM has to be on the first tape and the second tape has to be empty initially. You need to copy x on the second tape.