Notation:
DTM: Deterministic Turing Machine.
NDTM: Nondeterministic Turing Machine.

DEFINITION 1. The time required by a Turing machine M on an input z is the number of
steps to halting. If the machine does not halt; i.e. M(x) =", then the time is oco.

DEFINITION 2. Let f be a function from the nonnegative integers to the nonnegative inte-
gers, then we say that M operates within time f(n) if for any input z, the time required by
M on x is less than or equal to f(|z|).

DEFINITION 3. TIME(f(n)): Complexity class of languages that are decided by multistring
(k — string) (k — tape) DTM’s operating within time f(n).

DEFINITION 4. NTIME(f(n)): Complexity class of languages that are decided by k—string
NDTM'’s operating within time f(n).

DEFINITION 5. Suppose that for a k—string Turing machine M), and an input z,

M*
(8,0,2,0,€,....,>,€) — (H,wi,uy, ..., Wk, Ug),

where H is one of the halting states. Then the space required by My on x is X5 [wju,|. If
M, is with input and output, then the space required is: S¥=} w;u;|.

DEFINITION 6. Let f: N — N and let M be a Turing machine; we say M operates within
space bound f(n) if the space required for any input z is less than or equal to f(|z]).

DEFINITION 7. SPACE(f(n)): Languages decided by k—string deterministic Turing ma-
chines with input and output that operate within space bound f(n).

DEFINITION 8. NSPACE(f(n)): Languages decided by k—string nondeterministic Turing
machines with input and output that operate within space bound f(n).

DEFINITION 9. In the following, k € N.

1. P = TIME(n*) = TIME(poly) = U;jenTIME(n?).

NP = NTIME(n*) = NTIME (poly) = U;eyNTIME(n?).

EXP = TIME(2"") = TIME(exp) = U;en TIME(2").

NEXP = NTIME(2"") = NTIME(ezp) = U;enNTIME(2").
PSPACE = SPACE(n*) = SPACE(poly) = U,;enSPACE(n?).
NPSPACE = NSPACE(n*) = NSPACE (poly) = U;enNSPACE(n/).
L (or LOGSPACE) = SPACE(log n).

8. NL (or NLOGSPACE) = NSPACE(log n).

DEFINITION 10. P: set of all languages decidable by polynomial-time k—string DTM’s (i.e.
TIME(n*), k > 1).

DEFINITION 11. P: set of all languages decidable by polynomial-time k—string NDTM’s
(i.e. NTIME(n*), k > 1).

N Ot W N

Complexity Classes
A complexity class is specified by

e Model of computation. In our case, it is the multi-string Turing machine.

e Mode of computation. In our case, it is deterministic and nondeterministic.

e A bound resource. In our case, it is space and time.

e A bound. In our case, it is a function from the nonnegative integers into the nonneg-
ative integers.

In addition to the classes we have defined earlier, there are many other classes which are
well-known in computational complexity. Before, we define some of these classes, let first
define the following:

TIME(f): deterministic time.

SPACE(f): deterministic space.

NTIME(f): nondeterministic time.

NSPACE(f): nondeterministic space.

Where f is a function from the nonnegative integers into the nonnegative integers.

Now remember that we have defined P to be the class of languages decided by multi-string
DTM’s operating within polynomial time bound. (L.e. P = TIME(n*), k > 1.) Now we will
prove that acceptance is good enough for determining this class.

PROPOSITION 12. P: set of all languages accepted by polynomial-time k—string DTM’s.

PROOF. It suffices to show that if L is accepted by a k—string DTM, then L is decided
by a k—string DTM. So, let L be a language accepted by a DTM, M. Then, dk € N and
a positive integer c, such that if € L, then L accepts & within T = en® steps, where n is
the size of the input. Now let M’ be a DTM which simulates M in everything except in the
output, which is as follows: M'(x) = "yes” it M outputs ”yes” within T steps, where x is
the input string (of length n). And let M'(x) = "no” if M does not accept = at the end of
T steps.]

Now remember that we have defined N P to be the class of languages decided by multi-string
NDTM’s operating within polynomial time bound. (L.e. NP =NTIME(n*), k > 1.) The
question is: what is the relationship between P and N P? A partial answer is in the following
proposition.

ProrosiTiON 13. P C NP.

PRroOF. The proof follows from the fact that every DTM is a NDTM. O

DEFINITION 14. A decision problem A reduces to a decision problem B if an instance « of
A can be transformed to an instance § of B such that the answer to « is "yes” iff the answer
to 3 is yes, and the answer to « is "no” iff the answer to 3 is no.

Thus, to solve A on an input x, solve B on f(z), where f(x) is the transformation which
transforms « to 3. We can state the definition of reduction as follows: Decision problem A

3

reduces to decision problem B if there is a function f(x) such that the answer is "yes” to
the instance z of A iff the answer is ”yes” to the instance f(x) of B and the answer is "no”
to x iff the answer is "no” to f(x). In terms of langauges, the definition can be stated as
follows:

DEFINITION 15. Let L; and Lo be two languages over an alphabet >. We say that L; is

reduced in polynomial time to Lo if there is a polynomial-time computable function f :
¥* — ¥*, such that © € L, iff f(z) € Ly, Vo € ¥*.

REMARK 0.1. The following are the same:

e A reduces to B.

e A is reducible to B.
e There is a reduction from A to B.

REMARK 0.2. it Reduction is a very important technique in complexity theory, especially if
it can be done in polynomial time. Notice that if P; is reducible to P, then P; is at least as
hard as P;. The following are two forms of reduction which we will use very often.

e To show that a problem P; can be solved in polynomial-time (i.e. P, € P), reduce (if
possible) in polynomial time P; to a problem P, which belongs to P. .

e To show that a problem P, € NP is NP — complete (will be defined shortly), reduce
(if possible) a problem P; which is NP — complete to P, in polynomial time. .

Now the question is: is NP C P? If the answer is yes, then it will follow that P = NP.
However, this is an open question, but people strongly believe that the answer is no. Il.e.
there are languages which are in NP, but not in P.

Let now introduce an important theorem to highlight a result related to this issue. But
before that, we need an important definition.

DEFINITION 16. Let C' be a complexity class and let L € C. We say that L is C'— complete
if all languages in C' can be reduced to L. In other words, if L’ € C', then L’ can be reduced
in polynomial time to L.

DEFINITION 17. A language L is in NP — complete if

(1) L € NP.

(2) Every language L' in NP can be reduced in polynomial time to L.

If condition (2) holds in the last definition and we don’t know whether (1) holds or not, then
L is said to be NP — hard.

Notation: We will use NPC for NP — complete.

Notice that item (1) in the previous definition implies that NPC C NP.

REMARK 0.3. Notice that first condition of the previous definition implies that NPC C N P.

REMARK 0.4. All NPC problems are polynomial-time reducible to one another and so they
are different faces of the same problem.

4

PROPOSITION 18. If Ly is reducible in polynomial time to Ly and if Ly € P, then L, € P.

PRroor. In class. O

THEOREM 19. Let P, € NP. If P, is NPC and there is a polynomial-time reduction of P;
to Py, then Py is NPC.

PROOF. Since P, € NP, all we need to prove is that all languages of NP reduce in
polynomial time to P,. So, let L € NP. Now since P, € NPC, then there is a polynomial-
time reduction of L to P;. Thus, there exists a polynomial f such that if winL, then w is
transformed to a string « € P; within time f(Jw|) (notice that the length of |z| < f(|w]).
On the other hand, since there is a polynomial-time reduction of P; to P, then there exists
a polynomial g such that x is transformed to a string y € P, within time g(f(|w]|)). Thus,
the transformation of w to y is done within time f(|w|) + g(f(Jw|)). Therefore, L reduces to
P, in polynomial time. UJ

The above theorem is sometimes stated as follows:

THEOREM 20. Let L' € NPC'. If L is reducible in polynomial time to L, then
(1) L is NP-hard.
(2) If L € NP, then L € NPC.

THEOREM 21. Let L € NPC. If L € P, then P = NP. And if there exists T € NP — P,
then NPC NP = ¢.

Proor. Let L € NPC N P. We have to prove that NP = P. But, since P C NP, then
all we have to prove is that NP C P. So, let H € NP. Now since L € NPC, then there
is a polynomial-time reduction of H to L. But also L € P. So, by proposition 18, H € P.
Thus, NP C P.

Now assume that there is a language T' € NP — P. We have to prove that NPC N P = ¢.
The proof is by contradiction. So, assume that NPC N P # ¢. This means that there exists
S € NPCNP. Therefore, buy the first part, we get that P = NP. Now since T' € NP, and
P = NP, it follows that T" € P. This contradicts our assumption that '€ NP — P. O

The above theorem is sometimes stated in the following three forms:

THEOREM 22. Let L € NPC. Then P= NP iff L € P.

THEOREM 23. P# NP = NPCNP = ¢.

THEOREM 24. If some NP — complete problem is in P, then P = NP.

Now we recall that if L is a language over an alphabet 3, then the complement of L, denoted
by L is defined by: L =%* — L.

Next, we define complements of problems.

DEFINITION 25. Let A be a decision problem, the complement of A, denoted by A COM-
PLEMENT, is the decision problem whose answer is "yes” if the answer of A is "no” and
vice versa.

5

Example: Recall that HAM-CYCLE is the problem: given an undirected graph G does G
have a Hamiltonian cycle? The complement of HAM-CYCLE, denoted by HAM-CYCLE
COMPLEMENT is the following problem:

Given a graph G, is it true that G' does not have a Hamiltonian cycle.

Now we introduce a new complexity class:
DEFINITION 26. Let C' be a complexity class. We define the complexity class coC to be:
coC ={L| L€ C}.

Notice that we can say that
coC ={L|LeC}.

Thus, coC' is the set of all languages whose complements are in C'. The above definition is
equivalent to the previous one.

Notation: Sometime we will write co — C instead of coC.

REMARK 0.5. Notice that coC is different than C. To explain this point, let C' be a com-
plexity class over an alphabet ¥, then C' = {H H ¢ C}. Thus, it’s the class of all languages
over X that are not in C'. On the other hand, coC' is the complexity class of the complements
of all languages that are in C. Notice also that C N C = ¢, but C N coC' is not necessarily
empty. As a matter of fact, C' could be equal to coC' as it is the case when C' = P.

REMARK 0.6. Let C' be a complexity class.

If L €C,then L € coC.
If L € coC, then L € C.
If L € C,then L € coC.
If L € coC, then L € C.

DEFINITION 27. A complexity class C' is closed under complement if VL € C, L € C.

Next we address the question: what is the relationship between P and coP, PSPACE and
coPSPACE, NP and coN P, and finally, NPSPACE and coNPSPACE? A partial answer
is in the following propositions. Before, we state these propositions, let emphasize that coC'
is different than C for any complexity class C.

PROPOSITION 28. If C is a deterministic time or space complexity class, then C = coC.

PRrROOF. Let C' be a deterministic time or space complexity class, and let L € C', then
there exists a DTM, M, that decides L within the space/time bound of that class. Now let
M’ be the DTM that has the same structure as M except that the "yes” and "no” states
are switched. It is easy to see that M’ decides L within the same space/time bound as that
of M. Hence, L € C. O

Notice that the above proposition states that all deterministic time and space complexity
classes are closed under complementation (complements of languages which are memebers
of these classes.) Notice also that the above proposition states that if L € P, then L € P.

6

Thus, P = coP. This highlights the fact that coP is different than P. Recall here that there
are problems which are not in P. The following is one of them: given a TM M and an input
x, does M accept x within 2/*! steps?

The next question is: do the results which we have just stated apply to nondeterministic
space/time complexity classes? A partial answer is in the following.

PROPOSITION 29. Let C' be a nondetreministic space complexity class; then C' = coC'.

Notice that the above proposition implies that NPSPACE = coNPSPACE. The question
whether C' = coC', where C' is a nondeterministic time complexity class, is an open question.
For example, it is not known whether NP is closed under complement or not. The answer
is expected to be negative. In fact, it is expected that L in NP — Complete => L ¢ NP.
This leads us to the following theorem.

THEOREM 30. NP = coNP iff there is some NPC problem whose complement is in NP.

PROOF. (=) : Assume that NP = coNP and let L € NPC. Now since NPC C NP,
then L € NP. On the other hand, since NP = coNP, then L € coNP. Thus, L € NP.

(<=) : Assume that there is H € NPC such that H € NP. We have to prove that
NP = coNP. This can be done by proving that NP C coNP and coNP C NP.

First we will prove that NP C coNP. So, let L € NP. Then, since H € NPC, there is
a polynomial-time reduction of L to H. The same reduction is also a reduction of L to H.
Call the machine which performs this reduction Y;. On the other hand, since H € NP, then
there is a polynomial-time NDTM which decides H. Call this machine Y5. Now combine Y;
and Y5 to get a polynomial-time NDTM which decides L. Thus, L € NP. Hence, L € coNP.

Now we will prove that coNP C NP. So, let L € coNP. Then, L € NP. Now since
H € NPC, there is a polynomial-time reduction of L to H. The same reduction is also
a reduction of L to H. Call the machine which performs this reduction Y;. On the other
hand, since H € NP, then there is a polynomial-time NDTM which decides H. Call this
machine Y5. Now combine Y; and Y5 to get a polynomial-time NDTM which decides L.
Hence, L € NP. 0

Now what are the possible relationships between P, NP, and coNP? And is NPNcoNP =
¢? The answer to the second is no, because we know that P # ¢ and I claim that P C
NP NcoNP. We proved earlier that P C NP. Now it remains to prove that P C coNP.
But, if L € P, then L € P. This implies that L € NP. Thus, by definition, L € coNP.
Notice also that coNPC C coNP, because if L € coNPC, the L € NPC. This implies
L € NP. Hence, L € coNP. Now let answer the first question. We have the following 4
possibilities:

e P=NP=coNP.

e PC NP and NP = coNP.

e P=NPNcoNP and NP # coNP.
e PCNPNcoNP and NP # coNP.

The last possibility is what people expect. Also they expect NPCNP = NPCNcoNP = ¢
and NPC NcoNPC = NP NcoNPC = ¢ . Notice that this means that scientists believe

7

that no NPC' has its complement in NP, or equivelently, no NPC problem is in coNP.
Notice also that coNPC' C coNP. This is trivial, because if L € coNPC, then L € NPC
and so L € NP (because NPC C NP). But, L € NP implies that L € coNP.

ProroSITION 31. If NP # coNP, then P # NP.

PROOF. The proof is by contradiction. So, assume that P = NP. Now since NP #
coN P, then either

1. L € NP and L ¢ coNP,
or

2. 3H € coNP and H ¢ NP.
Case 1: 4L € NP and L ¢ coNP. Now since L € NP, then L € P. This implies LeP,
which implies L € NP. Thus, L € coNP. This contradicts our assumption that L ¢ coN P.

Case 2: JH € coNP and H ¢ NP. Now since H € coN P, then H € NP. This implies
H € P, which implies H € P. Thus, H € NP. This contradicts our assumption that
H ¢ NP.

O

