
Definition 1. Deterministic automata: For each combination of state and input sym-
bol, there is at most one transition. (One transition out of each state for each input symbol.)
In other words, it can’t be in more than one state at a time.

Definition 2. Nondeterministic automata: It is possible to have multiple transitions
for the same combination of state and input symbol. In other words, it can be in more than
one state at the same time. This situation is common in particle physics and computers.

Remark 0.1. The operation of a Turing machine M is defined using a configuration which
contains a complete description of the current computation.

Definition 3. A configuration is a triple (q, w, u) where q is the current state, w is the
string to the left of the cursor (includes also the one currently scanned by the cursor), and
u is the string to the right of the cursor.

Definition 4. We say

configuration (q, w, u) yields configuration (q′, w′, u′) in one step,

denoted by

(q, w, u)
M
−→ (q′, w′, u′)

if a step of the machine from (q, w, u) results in (q′, w′, u′).

And we say

configuration (q, w, u) yields configuration (q′, w′, u′) in k steps,

denoted by

(q, w, u)
Mk

−→ (q′, w′, u′)

if k steps of the machine from (q, w, u) result in (q′, w′, u′).

And finally we say

configuration (q, w, u) yields configuration (q′, w′, u′),

denoted by

(q, w, u)
M∗

−→ (q′, w′, u′)

if there exists k ≥ 0 such that

(q, w, u)
Mk

−→ (q′, w′, u′).

Definition 5. Let M be a Turing machine and let Σ be an alphabet for M . Let L be a
language over Σ− {t}. We say that M decides L if for any string x over Σ− {t}, we have
that M(x) = ”yes” if x ∈ L and M(x) = ”no” if x /∈ L.

If L is decided by some Turing machine, then L is called a recursive language.

Definition 6. With the notation as above, we say that M accepts L if M(x) = ”yes” if
x ∈ L and M(x) =↗ if x /∈ L.

If L is accepted by some Turing machine, then L is called recursively enumerable.
1

2

Remark 0.2. L recursive =⇒ L recrsively enumerable.

Remark 0.3. if L is a recursive language, then so is L.

Definition 7. Let f : (Σ− {t})∗ −→ Σ∗ be a function and let M be as above. We say M
computes f if ∀x ∈ (Σ− {t})∗, M(x) = f(x). If such M exists, then f is called a recursive
function.

Remark 0.4. Complexity theory is independent of input representation.

Definition 8. A k − string Turing machine, where k ∈ N is a quadruple

M = (K, Σ, δ, s),

where K, Σ, and s are as before and δ is a function from

K × Σk to (K ∪ {h, ”yes”, ”no”})× (Σ× {←,→,−})k.

In other words,

δ(p, a1, a2, ..., ak) = (q, b1, D1, b2, D2, ..., bk, Dk).

This means that if M is in state p and if the cursor of the first string is skanning a1, the
cursor of the second string is skanning a2, and so on, then the machine will change to state
q and the first cursor will write b1 and move in the direction D1, the second cursor will write
b2 and move in the direction D2, and so on.

Remark 0.5. Each one of the k strings starts with .. The input is in the first string and
the output is in the last string if the machine halts at h and the output is ”yes”/”no” if the
machine halts at ”yes”/”no”.

If the input of a k − string Turing machine is x, then it starts with the configuration

(s, ., x, ., ε, ..., ., ε).

If

(s, ., x, ., ε, ..., ., ε)
M

∗

−→ (”yes”, w1, u1, ..., wk, uk),

then M(x) = ”yes”.

If

(s, ., x, ., ε, ..., ., ε)
M∗

−→ (”no”, w1, u1, ..., wk, uk),

then M(x) = ”no”.

If

(s, ., x, ., ε, ..., ., ε)
M∗

−→ (h, w1, u1, ..., wk, uk),

then M(x) = y, where y is wkuk with . and all blanks at the end removed.

Note: We mean by the cursor the tapehead.

Definition 9. The time required by a Turing machine M on an input x is the number of
steps to halting. If the machine does not halt; i.e. M(x) =↗, then the time is ∞.

3

Definition 10. Let f be a function from the nonnegative integers to the nonnegative inte-
gers, then we say that M operates within time f(n) if for any input x, the time required by
M on x is less than or equal to f(|x|).

Definition 11. TIME(f(n)): Complexity class of languages that are decided by multi-
string (k − string) (k − tape) Turing machines operating within time f(n).

Definition 12. P : set of all languages decidable by Turing machines in polynomial times
(i.e. TIME(nk), k ≥ 1).

Theorem 13. Given any multistring (k-string) Turing machine Mk operating within time
f(n), there exists a Turing machine M operating within time O(f(n)2) such that M(x) =
Mk(x) for any input x.

Remark 0.6. The above thorem says that

1. single-string Turing machines are as powerful as multistring (k-string) Turing ma-
chines. I.e. they decide exactly the same languages and compute exactly the same
recursive functions. In other words, they have the same computational capabilities.

2. A multi-string (k-string) Turing machine can be more efficient (faster) than a single-
string Turing machine. But, the saving in time is at most polynomially.

Example 14. A single-string Turing machine which desides palindromes is O(n2), while a
two-string Turing machine that decides palindromes is O(n).

