CSCE 235 Apr 7, 01

Quiz #4

Name: SSN: Row:

Instructions: Do *ONLY* **four** of the following questions. **Circle** the questions which you want to be graded and **cross out** those which you do **not** want to be graded.

NOTE: If you do not follow the instructions above, you may lose some points.

Question 1: (5 points) What is the degree sequence of $\overline{C_n}$?

Solution: n-3, n-3, ..., n-3 (n of them).

Question 2: (5 points) When does $\overline{C_n}$ have an Euler cycle?

Solution: When n is odd and $n \geq 5$.

Question 3: (5 points) Let G be a simple graph with a degree sequence k_1 , k_2 , k_3 , k_4 , k_5 , k_6 , k_7 . What is the degree sequence of \overline{G} ?

Solution: $6 - k_7$, $6 - k_6$, $6 - k_5$, $6 - k_4$, $6 - k_3$, $6 - k_2$, $6 - k_1$.

Question 4: (5 points) Let G be a simple graph with a degree sequence k_1 , k_2 , k_3 , k_4 , k_5 , k_6 , k_7 . How many edges does \overline{G} have?

Solution: $21 - \frac{\sum_{i=1}^{7} k_i}{2}$.

Question 5: (5 points) Let G be a simple graph with n vertices and k edges, how many edges does \overline{G} have?

Solution: $\frac{n(n-1)}{2} - k$.

Question 6 (5 points) What is the degree sequence of K_n ?

Solution: n - 1, n - 1, ..., n - 1 (*n* of them).

Question 7 (5 points) When does K_n have an Euler cycle?

Solution: When n is odd.

Question 8 (5 points) How many edges does the n-cube have?

Solution: $n \cdot 2^{n-1}$.