CSCE 235 Homework 4

Due: Monday, April 16, 01

Show your answers and explain every step.

Question 1: Solve the following recurrence relation:

$$\frac{\sqrt{a_n}}{a_{n-1}} = a_{n-2}^4, \ n \ge 2, \ a_0 = 1, \ a_1 = 4.$$

Question 2:

Definition: Let G = (V, E) be a simple undirected graph. Then, the complement of G, denoted \overline{G} , is the simple undirected graph whose vertex set is V and whose edge set is

$$\overline{E} = \{(u, v) \mid u \in V, \ v \in V, \ (u, v) \notin E\}.$$

In other words, \overline{G} is a graph with the same vertex set as G and with an edge set of the missing edges (only) of G.

The following parts are unrelated. n and m are natural numbers.

- 1. What is the degree sequence of $K_{m,n}$?
- 2. How many edges does $\overline{K_{m,n}}$ have?
- 3. What is the degree sequence of $\overline{K_{m,n}}$?
- 4. How many edges does $\overline{C_n}$ have?
- 5. What is the degree sequence of $\overline{C_n}$?
- 6. Is there a simple undirected graph with a degree sequence 5, 2, 1, 1, 1?
- 7. Let G be a simple undirected graph. Is it possible for both G and \overline{G} to have Euler cycles? If yes, write down an example.
- 8. Prove or disprove the following:

If i and j are natural numbers, with i < j and $i \ge 300$, then C_i is a subgraph of C_j .

Warning: Do not consider particular values of n.

Remark: Denote the vertex set of C_i by $V = \{1, 2, ..., i\}$ and the vertex set of C_j by $V = \{1, 2, ..., j\}$. Notice that the numbering of the vertices for C_i and C_j must be consistent. In other words, the edge set of C_i is $\{(k, k+1) \mid k = 1, ..., i-1\} \cup \{(i, 1)\}$, and the edge set of C_j is $\{(k, k+1) \mid k = 1, ..., j-1\} \cup \{(j, 1)\}$.

Question 3: All of the following parts are based on the following undirected simple graph G = (V, E).

$$V = \{1, 2, ..., 8\}, E = \{(6, 5), (5, 3), (5, 4), (4, 3), (3, 1), (3, 2), (1, 2), (1, 8), (2, 8), (8, 7), (7, 6)\}.$$

- 1. Is G bipartite? Explain.
- 2. Does G have Hamiltonian cycles? If yes, mention one (only one).
- 3. Does G have Euler cycles? If yes, mention one. If not, explain why?
- 4. Is (3, 4, 5, 3, 1, 2, 3) a cycle in G? Is it a simple cycle?
- 5. Let H be the undirected simple graph with a vertex set $\{3, 4, 5, 2, 8\}$ and with an edge set $\{(3, 5), (3, 4), (2, 8)\}$.
 - Is H a subgraph of G? explain.
 - Is every simple path in \overline{H} is also a simple path in \overline{G} ? Explain.
 - Is every simple cycle in \overline{H} is also a simple cycle in \overline{G} ? Explain.
- 6. What is the degree sequence of G.
- 7. How many edges does \overline{G} have? Explain.
- 8. Is there a path in G from vertex 1 to vertex 6 with no repeated edges and that includes all the edges of G and all the vertices of G? Explain.