Facts About Sets

Let A, B, and C be subsets of a universal set U. Then

- 1. $\underline{\overline{A}} = U A$. 2. $\overline{\overline{A}} = A$.
- 3. $A \cup \overline{A} = U$, $A \cap \overline{A} = \phi$.
- 4. $A \cap U = A, A \cup U = U$.
- 5. $\operatorname{not}(x \in A)$ is equivalent to $x \in A$.
- 6. $\overline{\phi} = U$, $\overline{U} = \phi$.
- 7. If $A \subseteq B$, then $\overline{B} \subseteq \overline{A}$.
- 8. $A B = A \cap B$.
- 9. $\overline{A \cap B} = \overline{A} \cup \overline{B}, \ \overline{A \cup B} = \overline{A} \cap \overline{B}.$
- 10. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C), A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$
- 11. $A \cap (B \cap C) = (A \cap B) \cap C$, $A \cup (B \cup C) = (A \cup B) \cup C$.
- 12. $A \cup B = B \cup A$, $A \cap B = B \cap A$.
- 13. $A \cap B \subseteq A$, $A \cap B \subseteq B$, $A \subseteq A \cup B$, $B \subseteq A \cup B$.
- 14. A B is not necessarily equal to B A.
- 15. $A \times B$ is not necessarily equal to $B \times A$.
- 16. $A \cup \phi = A$, $A \cap \phi = \phi$, $\phi \subseteq A$.

Questions

Prove or disprove.

- 1. If p is a prime number greater than 2, then p is an odd natural number.
- 2. If a and b are irrational numbers such that $a \neq -b$, then a+b is irrational.
- 3. Every prime number is odd.
- 4. The set $A = \{m | m = 1 + 10n, n \in \mathbb{N}\}$ is a proper subset of the set $B = \{m | m = 1 + 10n, n \in \mathbb{N}\}$ $1+5n, n \in \mathbb{N}$.
- 5. If A and B are any sets such that $A \subseteq B$, then $\overline{A} \subseteq \overline{B}$.
- 6. If A, B, and C are any sets, then $A \cap (B \cup C) = (A \cap B) \cup C$.
- 7. If A, B, and C are any sets, then $A \cup (B \cap C) = (A \cup B) \cap C$.
- 8. IF A and B are any sets such that $A \subseteq B$, then $A \cup C \subseteq B \cup C$, for any set C.
- 9. IF A and B are any sets such that $A \subseteq B$, then $B \cap C \subseteq A \cap C$, for any set C.