Name:	 SSN:	 Row:	

Instructions:

- 1. Do the **question 8** and then do **ONLY** 5 of the first 7 questions.
- 2. Circle **clearly** questions which you want to be graded (remember everyone has to do question 8 and then 5 complete questions of the first 7 questions.) If you circle than the required number, then only the first 5 will be graded together with question 8.
- 3. Cross out any question which you don't want to be graded. If you don't finish a question and you don't want that question to be graded, then **cross it out**.
- 4. Show your work and explain your answers.
- 5. Do NOT use calculators or any electronic devices or anything which is related to the material.
- 6. Write down your name, SSN, and row.
- 7. Cheating of any form will result in a grade of zero and in submitting your name to the Judicial Affairs.
- 8. Talking to other students during the exam time is not allowed even if you finish early.

Question 1: The following parts are unrelated.

(a) (8 points) Prove: If a is a real number which is a multiple of 3, then $a^2 + 3$ is a multiple of 3.

- (b) Prove or disprove each of the following:
 - (i) (5 points) If n is a natural number, then $(2n)^3 + (1 + (-1)^n)$ is an even integer.
 - (ii) (5 points) If p is a prime number, then p+2 is not a prime number.

 $\begin{tabular}{ll} \bf Question \ 2: \ The \ following \ parts \ are \ unrelated. \end{tabular}$

- (a) (6 points) Find $(\{1,\{2\}\} \{1\}) \cap \{2\}.$
- (b) Decide whether the following are true or false:
 - (i) (4 points) $\{5\} \in \{2, \{5\}\}.$

(ii) (4 points) $\phi \in \{\phi, 2, 5\}$.

(iii) (4 points) If A, B, and C are any sets, such that $A \subseteq B$, then $A \cap C \subseteq B \cap C$. and $B \subseteq A$.

Question 3: The following parts are unrelated.

- (a) (9 points) Let A be the interval $(-2,3] \cup [4,6)$. Find $A \cap \mathbb{Z}$.
- (b) (9 points) Let A, B, and C be nonempty subsets of a universal set U. Prove or disprove:

If $A \subseteq B$, then $B \cup C \subseteq A \cup C$.

Question 4: The following parts are unrelated.

(a) (9 points) Let a be the sequence defined by $a_n = n + [1 + (-1)^n], \forall n \in \mathbb{N}$. Is a increasing? Is it decreasing? Explain.

(b) (9 points) Let b be the sequence defined by $b_n = 1 + 2^{n-3}$, $\forall n \in \mathbb{N}$, and let $S = \{4,7\}$. Find $\sum_{i \in S} b_{i-1}$.

Question 5: The following parts are unrelated.

(a) Let R be the relation on \mathbb{Z} defined by:

$$aRb \text{ iff } a - b \leq 2.$$

- (i) (5 points) Is R antisymmetric? If yes, prove it. If no, write down a counterexample.
 - (ii) (5 points) Is R symmetric? If yes, prove it. If no, write down a counterexample.
- (b) (8 points) Let R be the relation on $\mathbb{Z} \{0\}$ defined by:

$$aRb$$
 iff $3ab < 0$.

Find [4]. How many equivalence classes does R have? What are they?

Question 6: The following parts are unrelated.

(a) (8 points) Let R be the relation on \mathbb{Z} defined by:

$$aRb$$
 iff $3a + b$ is a multiple of 4.

Is R symmetric? If yes, prove it. If not, write down a counterexample.

(b) (10 points) Let R be the relation on \mathbb{R}^2 defined by:

$$(x,y)R(c,d)$$
 iff $2x + 3y = 2c + 3d$.

Prove that R is transitive.

Question 7: (18 points)

Prove the following formula by mathematical induction:

$$5^n - 1$$
, is a multiple of 4, $\forall n \in \mathbb{N}$.

WARNING: remember what I have told you in class. Use **ONL** the technique which I have used.

Question 8: (10 points) The following parts are unrelated.

- (a) Let $X = \{s, t, u\}$. Give an example of a binary relation on X which is an equivalence relation and a partial order at the same time.
- (b) Let R be a relation on a set X. Prove that $R^{-1}oR$ is symmetric. Give full explanation and write down every step.