Solutions of Exam I

Question 1:

(a)

a	b	\overline{a}	$a \longrightarrow b$	$\overline{a} \lor b$
T	T	F	T	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

(b)

- (i) False. Counterexample: 2 is prime but not odd.
- (ii) True. The proof is by cases:

If n is even, then $(-1)^n = 1$. Hence, $3 + (-1)^n = 4$ in this case. Therefore, it is even.

If n is odd, then $(-1)^n = -1$. Hence, $3 + (-1)^n = 2$ in this case. Therefore, it is even.

Question 2:

- (a) $\{\{1,2\}\}$. Be careful, $\{1,2\}$ is a wrong answer.
- (b)
- (i) False.
- (ii) False.
- (iii) True.

Question 3:

- (a) $\{1\}$.
- (b) False. Let $U=\{1,2,3\}$, $A=\{1\}$, and $B=\{1,2\}$. Then, $\overline{A}=\{2,3\}$ and $\overline{B}=\{3\}$. Thus, $A\subseteq B$, but \overline{A} is not a subset of \overline{B} .

Question 4:

(a) Not increasing. Consider a_2 and a_3 . The index of a_2 is less than that of a_3 , but $a_2 > a_3$.

Not decreasing. Consider a_1 and a_2 . The index of a_1 is less than that of a_2 , but $a_1 < a_2$.

(b)
$$\prod_{i \in S} b_i = b_4 * b_7 = 2^1 * 2^4 = 32.$$

Question 5:

- (a)
 - (i) Not antisymmetric, because (1,2) and (2,1) are both in R.
 - (ii) Not symmetric, because $(1, 10) \in \mathbb{R}$, but (10, 1) is not.

(b)

[3] =
$$\{a \in \mathbb{Z} - \{0\} \mid aR3\}$$

= $\{a \in \mathbb{Z} - \{0\} \mid 3a > 0\}$
= $\{a \in \mathbb{Z} - \{0\} \mid a > 0\}$
= \mathbb{Z}^+ .

R has two equivalence classes. We've already found one of them. Take any negative integer, e.g. -1, you get the other, which is: $\{a \in \mathbb{Z} - \{0\} \mid a < 0\} = \mathbb{Z}^-$.

Question 6:

(a) Yes, R is transitive. To prove it, let (a,b) and (b,c) be both in R, where a,b, and c are all in \mathbb{Z} . Now since $(a,b) \in R$, then there exists an integer m such that 3a+b=4m. And since $(b,c) \in R$, then there exists an integer k such that 3b+c=4k. Now, we have to show that $(a,c) \in R$. But, 3a+c=(4m-b)+(4k-3b)=4(m+k-b). Thus, $(a,c) \in R$.

(b)

$$[(1,3)] = \{(x,y) \in \mathbb{R}^2 \mid (x,y)R(1,3)\}$$
$$= \{(x,y) \in \mathbb{R}^2 \mid x+2y=1+6\}$$
$$= \{(x,y) \in \mathbb{R}^2 \mid x+2y=7\}$$

Thus, [(1,3)] is the straight line in the cartesian plane that has a slope of $\frac{-1}{2}$ and a y-intercept of $\frac{7}{2}$.

Similarly, [(1,2)] is the straight line in the cartesian plane that has a slope of $\frac{-1}{2}$ and a y-intercept of $\frac{5}{2}$.

Question 7: As I've mentioned in the hint, it's sufficient to prove that

$$2+4+6+...+2n = n(n+1), \forall n \in \mathbb{N}.$$

Basic Step: For n = 1:

$$1(1+1) = 2$$
. So, it's true for $n = 1$.

Inductive Step: Assume it's true for n = k, where $k \in \mathbb{N}$, and show that it's true for n = k + 1.

From the assumption, we have

$$2+4+6+...+2k = k(k+1).$$

Now

$$2+4+6+...+2k+2(k+1) = k(k+1)+2(k+1)$$

= $(k+1)(k+2)$

Thus, 2+4+6+...+2k+2(k+1)=(k+1)(k+2). Therefore, the statement is true for n=k+1. Hence, by the Principle of Mathematical Induction, the statement is true.

Question 8:

(a) The answer is any member (except ϕ) of the power set of $\{(e,e),(f,f),(g,g)\}$. So, all of the following answers are true. Any other answer is WRONG.

$$\{(e,e),(f,f),(g,g)\}$$

$$\{(e,e),(f,f)\}.$$

$$\{(e,e),(g,g)\}.$$

$$\{(f, f), (g, g)\}.$$

$$\{(e,e)\}.$$

$$\{(f,f)\}.$$

$$\{(g,g)\}.$$

(b) If $(a,b) \in RoR^{-1}$, then $\exists c \in X$, such that $(a,c) \in R^{-1}$ and $(c,b) \in R$. But, $(a,c) \in R^{-1}$ implies that $(c,a) \in R$. And $(c,b) \in R$ implies that $(b,c) \in R^{-1}$. Now since $(a,c) \in R^{-1}$ and $(c,a) \in R$, it follows, by the definition of RoR^{-1} , that $(a,a) \in RoR^{-1}$. Similarly, since $(b,c) \in R^{-1}$ and $(c,b) \in R$, it follows, by the definition of RoR^{-1} , that $(b,b) \in RoR^{-1}$.