Question 1: The following parts are unrelated.

- (a) (8 points) Prove by truth tables that $a \longrightarrow b \equiv \overline{a} \vee b$.
- (b) Prove or disprove each of the following:
 - (i) (5 points) If n is a prime number, then n is odd.
 - (ii) (5 points) $3 + (-1)^n$ is an even integer for every natural number n.

Question 2: The following parts are unrelated.

- (a) (6 points) Find $\{1, 2, \{1, 2\}\} \{1, 2\}$.
- (b) Decide whether the following are true or false:
 - (i) $(4 \text{ points}) \{5\} \in \{2, 5\}.$
 - (ii) (4 points) $\phi \in \{2, 5\}$.
 - (iii) (4 points) If A and B are any sets, then A=B iff $A\subseteq B$ and $B\subseteq A$.

Question 3: The following parts are unrelated.

- (a) (9 points) Let A be the interval [-2, 2). Find $A \cap \mathbb{N}$.
- (b) (9 points) Let A and B be nonempty subsets of a universal set U. Prove or disprove:

If $A \subseteq B$, then $\overline{A} \subseteq \overline{B}$.

Question 4: The following parts are unrelated.

- (a) (9 points) Let a be the sequence defined by $a_n = (-1)^n$, $\forall n \in \mathbb{N}$. Is a increasing? Is it decreasing? Explain.
- (b) (9 points) Let b be the sequence defined by $b_n = 2^{n-3}$, $\forall n \in \mathbb{N}$, and let $S = \{4, 7\}$. Find $\prod_{i \in S} b_i$.

Question 5: The following parts are unrelated.

(a) Let R be the relation on \mathbb{Z} defined by:

$$aRb$$
 iff $a < b + 5$.

- (i) (5 points) Is R antisymmetric? If yes, prove it. If no, write down a counterexample.
 - (ii) (5 points) Is R symmetric? If yes, prove it. If no, write down a counterexample.
- (b) (8 points) Let R be the relation on $\mathbb{Z} \{0\}$ defined by:

$$aRb \text{ iff } ab > 0.$$

Find [3]. How many equivalence classes does R have? What are they?

Question 6: The following parts are unrelated.

(a) (8 points) Let R be the relation on \mathbb{Z} defined by:

$$aRb$$
 iff $3a + b$ is a multiple of 4.

Is R transitive? If yes, prove it. If not, write down a counterexample.

(b) (10 points) Let R be the relation on \mathbb{R}^2 defined by:

$$(x,y)R(c,d)$$
 iff $x + 2y = c + 2d$.

Find [(1,3)]. What does [(1,2)] represent in the Cartesian plane?

Question 7: (18 points)

Prove the following formula by mathematical induction:

$$(2+4+6+8+...+2n)^3 = n^3(n+1)^3, \forall n \in \mathbb{N}.$$

Hint: It suffices to prove that

$$2+4+6+...+2n = n(n+1), \forall n \in \mathbb{N}.$$

WARNING: remember what I have told you in class. Use **ONL** the technique which I have used.

Question 8: (10 points) The following parts are unrelated.

- (a) Let $X = \{e, f, g\}$. Give an example of a binary relation on X which is symmetric and antisymmetric at the same time.
- (b) Let R be a relation on a set X. If $(a,b) \in RoR^{-1}$, prove that (a,a) and (b,b) are both in RoR^{-1} . Give full explanation and write down every step.