SS#

Instructions: Do all of the following questions. Show your work and explain your answers. **Question 1:** (20 points) Let $A = \{2\}$, $B = \{2,3\}$, and $X = \{1,2,3,4\}$. Find (a) $(A \setminus B) \times B$.

- (b) The power set of $A \cup B$.
- (c) $(X \setminus A^c) \setminus A$.
- (d) The power set of $A \times B$.

Question 2: (10 points) Use truth tables to prove that:

 $(a\Longrightarrow b)$ is equivalent to $(\sim b\Longrightarrow \sim a)$. (i.e. $(a\Longrightarrow b)\equiv (\sim b\Longrightarrow \sim a)$.)

Question 3: (15 points) Let $A = \{1, 2, 3\}$ and define the following equivalence relation, R, on A:

$$R = \{(1,1), (1,2), (2,1), (2,2), (3,3)\}.$$

- (i) Is R antisymmetric? Explain.
- (ii) Find the equivalence class of 3.

MakeUp2MakeUp2MakeUp2

Question 4: (15 points) Decide whether the following statements are true or false (i.e. prove or disprove). If they are false, then give a counter example.

- (a) If a and b are irrational, then a^b is irrational.
- (b) For any sets A, B, and C, if $A \subseteq B$, then $(A \cup C) \subseteq (B \cup C)$.

Question 5: (10 points) Use mathematical induction to prove that $10^{n+1} + 10^n + 1$ is divisible by 3 for all $n \ge 1$.

Question 6: (20 points)

- (a) Give an example of a bijective function from the set $(\mathbb{N}\setminus\{1,2,3\})$ to the set $(\mathbb{N}\cup\{-1,0\})$.
- (b) Prove that the function $f: \mathbb{R} \longrightarrow (\sqrt{2}, \infty)$ defined by $f(x) = e^x + \sqrt{2}$ is bijective (i.e one-to-one and onto.)

Question 7: (10 points) Draw the Hasse diagram of the poset (A, \subseteq) , where

$$A=\{\{1\},\{2\},\{1,2\},\{1,3\},\{1,2,4\}\}.$$

Extra Credit:

- (1) (7 points) Let $A = \{1, 2, 3\}$. Give an example of a binary relation on A which is not symmetric and not antisymmetric.
- (2) (7 points) Give an example of a bijective function from \mathbb{R} onto the interval (0,1).
- (3) (7 points) Give an example of a poset which has no maximum element and no minimum element.