CSCE 235 Fall 2000

Homework #1

Question 1: Prove or disprove: For any sets A, B, C, and D:

Note: F^c is the same as \overline{F} and $F \setminus G$ is the same as F - G, for any sets F and G. Also, \iff is the same as \iff and \implies is the same as \implies .

(a)
$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$$

(b)
$$A \cup B = A \cup C$$
 and $A \cap B = A \cap C \Longrightarrow B = C$.

(c)
$$(A \cap B) \cup C = A \cap (B \cup C) \iff C \subset A$$
.

(d)
$$A \cap B^c = \phi$$
 and $A^c \cap B = \phi \iff A = B$.

(e)
$$A \cup B = A \cap B \iff A = B$$
.

(f)
$$(A^c \cap (A \cup B)) \cup (A \cap B) = B$$
.

(g)
$$(A \cap B)^c = A^c \cap B^c$$
.

(f)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$
.

(g)
$$(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$$
.

(h)
$$(A^c \cap (A \cup B)) \cup (A \cap B) = B$$
.

Question 3: Let x be any integer. Determine whether the following statement is true or false. Give full explanation.

"If 5 is a solution of $e^{x-5} = 3$ or if 2x is an even integer, then 2x + 1 is an odd integer and 4 is an even integer."

Question 4: Let $A = \{1\}$ and $B = \{1, 2\}$ be subsets of the universal set $X = \{1, 2, 3\}$. Find

- (a) $A \setminus B$ (b) $A \cap B$ (c) $A \cup B$.
- (d) $A \oplus B$ (e) $A \times B$ (f) A^c .