Name:

SS#

Instructions: Do all of the following questions. Show your work and explain your answers. **Question 1:** (20 points) Let $A = \{2\}$, $B = \{2,3\}$, and $X = \{1,2,3,4\}$. Find (a) $A \setminus B$.

- (b) The power set of $A \cup B$.
- (c) A^c .
- (d) $A \times B$.

Question 2: (10 points) Use truth tables to prove that:

 $(a\Longrightarrow b)$ is equivalent to $(\sim a\vee b).$ (i.e. $(a\Longrightarrow b)\equiv (\sim a\vee b).)$

Question 3: (15 points) Let $A = \{1, 2, 3\}$ and define the following equivalence relation, R, on A:

$$R = \{(1,1), (1,2), (2,1), (2,2), (3,3)\}.$$

- (i) Is R antisymmetric? Explain.
- (ii) Find the equivalence class of 3.

Question 4: (15 points) Decide whether the following statements are true or false (i.e. prove or disprove). If they are false, then give a counter example.

- (a) If n is an **even** integer, then **3n-5** is an even integer.
- (b) For any sets A and B, if $A \subseteq B$, then $A^c \subseteq B^c$.

Question 5: (10 points) Use mathematical induction to prove the following:

$$1+2+2^2+2^3+\ldots+2^n=2^{n+1}-1$$
, for $n \ge 1$.

Question 6: (20 points)

- (a) Give an example of a bijective function from the set of even natural numbers $2\mathbb{N}$ to the set of odd natural numbers $2\mathbb{N} 1$.
- (b) Prove that the function $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f(x) = e^x + 1$ is bijective (i.e one-to-one and onto.)

Question 7: (10 points) Draw the Hasse diagram of the poset (A, \subseteq) , where

$$A=\{\{1\},\{1,2\},\{1,2,3\},\{1,2,4\}\}.$$

Extra Credit:

- (1) Let $A = \{1, 2, 3\}$.
- (a) (7 points) Give an example of a binary relation on A which is both symmetric and antisymmetric.
- (b) (7 points) Give an example of a binary relation on A which is not symmetric and not antisymmetric.
- (2) (7 points) Give an example of a bijective function from $(\mathbb{N} \setminus \{1,2\})$ to $\mathbb{N} \setminus [\{1\}]$.