Name: SS#

Instructions: Do all of the following questions. Show your work and explain your answers. **Do not use calculators**.

Question 1: (25 points) Find the value of each of the following (a) -3^2 .

(b)
$$(-3)^2(-3)^{27}(3)^{-25}$$
.

- (c) 4 4 * 6 + 2 * 10, where * represents multiplication.
- (d) $\frac{0}{-5+x+y}$, where x > 0 and y < 0, and $x + y \neq 5$.
- (e) $\frac{-7777777}{0}$.

Question 2: (10 points) Use the formula

$$y^8 - x^8 = (y - x)(y + x)(y^2 + x^2)(y^4 + x^4)$$

to factor $y^8 - 1$.

Question 3: (10 points) Find the real number k, which satisfies:

The sum of half the number and three quarters of the number is equal to 5555.

Question 4: (25 points) Determine whether the following statements are true or false.

- (a) $\sqrt{x+y} = \sqrt{x} + \sqrt{y}$, where x and y are positive.
- (b) $\frac{2x}{3x+y} = \frac{2}{3+y}$, where $3x + y \neq 0$.
- (c) $\frac{x+y}{z} = \frac{x}{z} + \frac{y}{z}$, where $z \neq 0$.
- (d) $-\frac{-2}{3} > \frac{3}{4}$.
- (e) The number 2 is a solution of $\frac{2x^3-16}{x^4+77777} = 0$.

Question 5: (10 points) Let $y + 55555 = \frac{3x-5}{2} + 55555$. Write x in terms of y (i.e., solve for x.)

Question 6: (10 points) Simplify the following expression $3(e^{\ln(x)})(e^{\ln(x^2)}),$

where x > 0.

Question 7: (10 points) Let $g(x) = 3xf(x^2 - 1)$. Given that $f(24) = \frac{1}{90}$, find g(5).