Binary Relations

DEFINITION 1. Let R_1 be a binary relation from X to Y and R_2 a binary relation from Y to Z; then

$$R_2 o R_1 = \{(x, z) \mid (x, y) \in R_1 \text{ and } (y, z) \in R_2 \text{ for some } y \in Y \}.$$

DEFINITION 2. Let R be a relation on X; then

$$R^{-1} = \{(x, y) \mid (y, x) \in R\}.$$

Question: Let R_1 be a binary relation from X to Y and R_2 a binary relation from Y to Z. Prove or disprove: $R_1 \circ R_2 = R_2 \circ R_1$.

Solution: The satement is false. You can come up with a counterexample easily. Do not forget that

 $R_1 o R_2$ may be even undefined.

REMARK 0.1. Notice that every function is a relation. In other words, functions are special cases of relations. For example, if f is the function from $X = \{-1, 0, 2\}$ onto $Y = \{0, 1, 4\}$ given by $f(x) = x^2$. Then f can be represented as $f = \{(-1, 1), (0, 0), (4, 4)\}$.

Notice also that if f is a function from X into X and if f^{-1} exists, then $f \circ f^{-1}(x) = f^{-1} \circ f(x) = x$, $\forall x \in X$. As a relation, we have $f \circ f^{-1} = f^{-1} \circ f = \{(x, x) \mid x \in X\}$. The question now is: does the same thing hold for any relation R on a set X? If no, then what are the properties of $R \circ R^{-1}$? We'll address some of those properties shortly.

Question: Let R be a relation on X. Prove or disprove:

- (1) $RoR^{-1} = R^{-1}oR$.
- (2) $|RoR^{-1}| = |R^{-1}oR|$.
- (3) RoR^{-1} and $R^{-1}oR$ are both symmetric.
- (4) If R is symmetric, then $R^{-1} = R$.

(5) RoR = R.

Solution:

- (1) False. Counterexample: take $X = \{1, 2, 3\}$ and $R = \{(1, 3)\}$. Then $R^{-1} = \{(3, 1)\}$. Hence, $RoR^{-1} = \{(3, 3)\}$ and $R^{-1}oR = \{(1, 1)\}$.
- (2) False. Counterexample: take $X = \{1, 2, 3\}$ and $R = \{(1, 2), (3, 2)\}$. Then $R^{-1} = \{(2, 1), (2, 3)\}$. Hence, $RoR^{-1} = \{(2, 2)\}$ and $R^{-1}oR = \{(1, 1), (1, 3), (3, 1), (3, 3)\}$.
- (3) True. The proof was done in class.
- (4) Straightforward.
- (5) Easy.

Question: Let R be a relation on X. Prove or disprove:

- (1) RoR^{-1} is transitive.
- (2) RoR^{-1} is reflexive.

Question: Let R be the relation on \mathbb{Z} defined by:

aRb iff 3a + b is a multiple of 4.

Is R an equivalence relation on \mathbb{Z} ? If yes, then what is [1]. Also, find R^{-1} .

Solution: R is an equivalence relation, because

- (1) R is reflexive, because $\forall a \in \mathbb{Z}$, 3a + a = 4a which is divisible by 4. Thus, $(a, a) \in \mathbb{R}$.
- (2) R is symmetric, because if $(a, b) \in R$, then 3a + b = 4m, for some $m \in \mathbb{Z}$. Thus, b = 4m 3a. But now 3b + a = 3(4m 3a) + a = 4(3m 2a). Notice that 3m 2a is an integer. Thus, 3b + a is divisible by 4, which means that $(b, a) \in R$.

(3) R is transitive, because if (a, b) and (b, c) are in R, then 3a+b=4m for some $m \in \mathbb{Z}$ and 3b+c=4k for some $k \in \mathbb{Z}$. Therefore, 3a+c=4m-b+4k-3b=4(m+k-b). Notice that m+k-b is an integer. Thus, 3a+c is divisible by 4, which means $(a, c) \in R$.

$$[1] = \{b \in \mathbb{Z} \mid aR1\}$$

$$= \{a \in \mathbb{Z} \mid 3a + 1 = 4k, \ k \in \mathbb{Z}\}$$

$$= \{a \in \mathbb{Z} \mid a = \frac{4k - 1}{3}, \ k \in \mathbb{Z}\}$$

$$= \{a \in \mathbb{Z} \mid a = 4k - 3, \ k \in \mathbb{Z}\}$$

 $R^{-1} = \{(a, b) \mid a + 3b \text{ is a multiple of } 4\}.$

Question: Define the following relation on R^2 :

$$(a,b)R(c,d)$$
 iff $a^2 + b^2 = c^2 + d^2$.

Is R an equivalence relation? If yes, then what is the equivalence class of (α, β) and what does it represent in the Cartesian plane? Also, find R^{-1} .

Solution: R is an equivalence relation. This can be easily verified. Also, it is easy to see that $R^{-1} = R$. Why?

Now, $[(\alpha, \beta)] = \{(x, y) \mid x^2 + y^2 = \alpha^2 + \beta^2\}$. It is easy to see that $[(\alpha, \beta)]$ is a circle centered at the origin and with readius $\sqrt{\alpha^2 + \beta^2}$. Actually, the disjoint equivalence classes partition the Cartesian plane (i.e. R^2) into a set of circles centered at the origin.