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Abstract

In this paper, we prove a conjecture, which was proposed by Frank
Stenger in 1997, concerning the localization of eigenvalues of the Sinc
matrix I(−1), a problem that is important in both the theory and the
practice of Sinc methods. In 2003, Iyad Abu-Jeib and Thomas Shores
established a partial answer to this unsolved problem. The techniques
they have developed, however, turn out to be the key that finally leads
to the settlement here of Stenger’s conjecture.
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1 Introduction

For the past three decades, Sinc approximation methods have been success-
fully used in handling a wide variety of computational problems, which arise
from interpolation, numerical differentiation and integration, and numerical
solution of ordinary and partial differential equations and integral equations,
such as Hilbert transforms, Laplace transform inversion, Wiener-Hopf equa-
tions, and so on; see [7, 15, 17] and the references therein. Currently, research
on Sinc methods remains “ongoing and vibrant” in the words of F. Stenger,
who largely laid the foundations for these methods. For most recent relevant
works, see, for example, [2, 3, 10, 11, 14, 17].

One of the key ingredients of Sinc methods is the so-called Whittaker’s
cardinal function, which is defined as a series in terms of the sinc function

sinc(x) =
sin(πx)

πx
, ∀x ̸= 0,

while sinc(0) = 1. For detailed background material, we refer the reader to
[17]. In this paper, we are concerned with the Sinc matrix I(−1), which arises
from Sinc indefinite integration and convolution. Specifically, I(−1) ∈ Rn×n

has a Toeplitz structure, whose (j, k)th entry is given by

I
(−1)
j,k =

1

2
+ sj−k,

where sk =

∫ k

0

sinc(x)dx for k = 0, ± 1, . . . , ± (n− 1). Clearly, this matrix

can be written as

I(−1) =
1

2
eeT + S, (1)

where e ∈ Rn is the (column) vector of all ones and where

S =


s0 −s1 −s2 . . . −sn−1

s1 s0 −s1 . . . −sn−2

s2 s1 s0 . . . −sn−3
...

...
...

. . .
...

sn−1 sn−2 sn−3 . . . s0

 (2)

is skew symmetric and, again, Toeplitz. Note that s0 = 0. We mention that
all the eigenvalues of S are purely imaginary as a consequence of its skew
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symmetry.

It is easy to justify that all the eigenvalues of I(−1) lie in the closed right
half-plane, see Section 2 as well as [1, 17]. However, as Stenger pointed out
in his 1997 paper [16], the validity of relevant Sinc approximations hinges
on the assumption that all these eigenvalues are located in the open right
half-plane. In light of favorable numerical evidence for each I(−1) of order up
to n = 513, Stenger conjectured in [16] that this may be the case for all I(−1),
regardless how large n is. In his 2011 book [17, p.99], Stenger reiterated the
conjecture, quoting favorable numerical evidence for each I(−1) of order up
to n = 1024.

We provide in this paper a proof that finally settles Stenger’s conjecture
concerning the eigenvalues of I(−1). Our work is mainly motivated by some
recent results of I. Abu-Jeib and T. Shores [1]. In fact, we shall follow the
same methodology that has been developed in [1]. For the presentation here
to be as self-contained as possible, we shall also include the proofs of some
important known results, mainly from [1].

2 Proof of Stenger’s Conjecture

We shall consider in what follows a slightly more general situation. Instead
of I(−1) as in (1), we define

A = A(ω) = ωeeT + S ∈ Rn×n, (3)

where ω is an arbitrary positive number and S is given as in (2). Obviously,
A(1/2) = I(−1). To avoid triviality, we always assume n ≥ 2.

Our main result can be stated as:

THEOREM 2.1 For S ∈ Rn×n as in (2) and for any ω > 0, the matrix A
in (3) has all its eigenvalues in the open right half-plane. In particular, all
the eigenvalues of I(−1) are located in the open right half-plane.

Before proceeding to the proof of the above conclusion, we shall discuss
some preparatory results first.
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For the time being, let us take

B = ωeeT + C ∈ Rn×n,

where ω > 0 and C is any skew symmetric matrix. With this broader setting,
we have the following lemma, which applies, in particular, to our matrix A
in (3) as well as to I(−1).

LEMMA 2.1 ([1, Lemma 2.1] and [17, p.98]) For any ω > 0, the eigen-
values of the matrix B all lie in the closed right half-plane. Let (λ, u) be an
eigenpair of B. Then, λ is on the imaginary axis if and only if eTu = 0, that
is, u and e are orthogonal to each other. Moreover, when λ is located on the
imaginary axis, (λ, u) is also an eigenpair of C.

Proof: Let (λ, u) be an eigenpair of B. Since C is skew symmetric, u∗Cu is
purely imaginary. From

λ∥u∥22 = u∗Bu = ωu∗eeTu+ u∗Cu = ω
∣∣eTu∣∣2 + u∗Cu,

we see that

Re(λ) =
ω
∣∣eTu∣∣2
∥u∥22

≥ 0.

Besides, Re(λ) = 0 if and only if eTu = 0.

Assume now that Re(λ) = 0. Then by Bu = λu and eTu = 0, we obtain
Cu = λu. This completes the proof. �

Incidentally, as can be seen from the proof above,

Im(λ) =
u∗Cu

∥u∥22
.

In addition, the Cauchy-Schwarz inequality implies here Re(λ) ≤ nω. On a
separate note, if ω < 0, then clearly we would have Re(λ) ≤ 0 instead.

Lemma 2.1 shows that each eigenvector of A, and therefore the specific
formation of S, plays a crucial role in determining the location of the cor-
responding eigenvalue. We comment that if S is replaced by a general skew
symmetric Toeplitz matrix, the conclusion in Theorem 2.1 may not be true
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as illustrated by the following example.

Consider the 3× 3 matrix

B =
1

2
eeT +

 0 −c c
c 0 −c
−c c 0

 ,

where c is any nonzero real number. One can easily verify that the eigenval-
ues of B are 3/2 and ±i

√
3c, thus not all lying in the open right half-plane.

For this case, the eigenvectors corresponding to the purely imaginary eigen-
values are indeed both orthogonal to e.

Given the matrix A in (3), however, we shall prove that eTu ̸= 0 for any
eigenvector u of A, or equivalently that none of the eigenvalues of A show up
on the imaginary axis. This leads to the settlement of Stenger’s conjecture.

We also remark that according to Lemma 2.1, the specific value of ω —
as long as ω > 0 — turns out to be irrelevant. This remains to be the case
for all the results in the sequel.

Next, following [1], we adopt the notion of a generating function f(θ) of
a general Toeplitz matrix C = [cj−k] ∈ Rn×n, namely, a function f(θ) such
that

ck =
1

2π

∫ π

−π

f(θ)e−ikθdθ, k = 0, ± 1, . . . , ± (n− 1).

To deal with potential (nonremovable) singularities, all integrals here, and
in what follows, are interpreted in the sense of the Cauchy principal value
whenever appropriate.

LEMMA 2.2 ([1, Lemma 2.3]) The matrix S given in (2) has a generating
function

f(θ) =
i

θ
.

Let
T = −iS. (4)

Then the generating function of T is given by f(θ) =
1

θ
.
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Proof: By direct calculation using f(θ) =
i

θ
, we have

1

2π

∫ π

−π

f(θ)e−ikθdθ =
1

2π

∫ π

−π

(
i cos(kθ)

θ
+

sin(kθ)

θ

)
dθ

=
1

π

∫ π

0

sin(kθ)

θ
dθ.

When k = 0, the above gives zero, i.e. s0. When k > 0, we use the substitu-
tion kθ = πx to arrive at

1

2π

∫ π

−π

f(θ)e−ikθdθ =
1

π

∫ π

0

sin(kθ)

θ
dθ =

∫ k

0

sinc(x)dx = sk.

The generating function of T follows directly from that of S. �

We mention that the generating function relevant to I(m), where m ≥ 0,
is known to be f(θ) = (iθ)m; see [15]. Specifically, for each m = 0, 1, 2, . . .,

the matrix I(m) is defined as I(m) = [δ
(m)
j,k ], where

δ
(m)
j,k = hm dm

dxm

[
sinc

(
x− jh

h

)] ∣∣∣∣
x=kh

with h > 0 being the step size. Lemma 2.2, therefore, can be thought of as
an extension of this result. We also mention that in [1], Abu-Jeib and Shores
attributed such generating function methodology to an earlier work by W.
Trench [19], who employed the Lebesgue integral but provided many of the
ideas that we can use here.

REMARK 2.1 For simplicity, we shall focus in our remaining proofs on
the matrix T given by (4). This matrix is hermitian, which implies that its
eigenvalues must be all real. Clearly, for some real b, (b, u) is an eigenpair of
T if and only if (ib, u) is an eigenpair of S.

In [1], it has been established that the following proposition is true for
I(−1), which partially solves Stenger’s conjecture. We adapt it to the slightly
more general case of our matrix A that involves ω > 0. For completeness,
we also include its proof below.
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THEOREM 2.2 ([1, Theorem 2.4]) If λ = ib is a purely imaginary eigen-

value of the matrix A that is given in (3), then |λ| > 1

π
.

Proof: Let u be the eigenvector of A corresponding to λ. Based on Lemma
2.1, the assumption of λ being purely imaginary is equivalent to eTu = 0.
Without loss of generality, we assume b ≥ 0. We prove this theorem by con-

tradiction, i.e. by starting with 0 ≤ b ≤ 1

π
.

We claim first that for θ ∈ [−π, 0) ∪ (0, π], except at θ = −π and θ = π,(
1

θ
− b

)
sin(θ) > 0. (5)

Clearly this is true when b = 0. When 0 < b ≤ 1

π
, (5) can be easily verified

by checking the sign of each factor on the left-hand side over the intervals
[−π, 0) and (0, π], respectively. Notice that θ = 0 is a removable singularity

since lim
θ→0

(
1

θ
− b

)
sin(θ) = 1.

By Lemma 2.1 and Remark 2.1, we know that (b, u) is an eigenpair of T .
Let

U(z) = u1 + u2z + . . .+ unz
n−1,

where z ∈ C, be the eigenpolynomial1 associated with u. Due to the assump-
tion eTu = 0, U(z) can be factored as

U(z) = (z − 1)Û(z).

Observe now that we can always choose a vector v such that

V (z) = v1 + v2z + . . .+ vnz
n−1

can be factored as
V (z) = (z + 1)Û(z).

1Observe, here and in the proof of Theorem 2.1, that such a polynomial U(z) is well-
defined and nontrivial, i.e. at least degree one, since u ̸= 0 and eTu = 0. In particular,
the latter condition guarantees that z = 1 is a zero of U(z). A similar comment applies
to the polynomial V (z) by its definition.
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On one hand, we have

⟨Tu, v⟩ =
1

2π

∫ π

−π

1

θ
U(eiθ)V (eiθ)dθ

=
1

2π

∫ π

−π

(eiθ − 1)(e−iθ + 1)

θ

∣∣∣Û(eiθ)
∣∣∣2 dθ

=
i

π

∫ π

−π

sin(θ)

θ

∣∣∣Û(eiθ)
∣∣∣2 dθ. (6)

On the other hand, we obtain in a similar fashion that

⟨bu, v⟩ = i

π

∫ π

−π

b sin(θ)
∣∣∣Û(eiθ)

∣∣∣2 dθ. (7)

Because of (6), (7), and ⟨Tu, v⟩ = ⟨bu, v⟩, it follows that∫ π

−π

(
1

θ
− b

)
sin(θ)

∣∣∣Û(eiθ)
∣∣∣2 dθ = 0.

This last equality, however, is a contradiction because of (5) along with the

fact that
∣∣∣Û(eiθ)

∣∣∣2 > 0 except (possibly) at only a finite number of values of

θ on the interval [−π, π]. �

Finally, with all the preliminary results at hand, we are ready to present
the proof of our Theorem 2.1.

Proof of Theorem 2.1: First of all, according to Lemma 2.1, it suffices to
show that the matrix A as in (3) does not have any purely imaginary eigen-
values.

Based on Theorem 2.2, the proof here further reduces to demonstrating

that for any real number b such that |b| > 1

π
, λ = ib cannot be an eigenvalue

of A.

We proceed by way of contradiction. Suppose to the contrary that there

exists some real number b with |b| > 1

π
, such that λ = ib is an eigenvalue of

A. By Lemma 2.1, this means that its corresponding eigenvector u satisfies
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eTu = 0. Besides, Lemma 2.1 and Remark 2.1 imply that (b, u) must be an

eigenpair of T . Without loss of generality, we assume that b >
1

π
.

We first claim that for θ ∈ [−π, 0) ∪ (0, π], except at θ =
1

b
,(

1

θ
− b

)
sin

(
θ

2

)
sin

(
θ − 1

b

2

)
< 0. (8)

This can be readily verified by checking the sign of each factor on the left-
hand side over the intervals [−π, 0), (0, b−1], and [b−1, π], respectively. Also
observe that θ = 0 is a removable singularity, since

lim
θ→0

(
1

θ
− b

)
sin

(
θ

2

)
sin

(
θ − 1

b

2

)
= −1

2
sin

(
1

2b

)
.

Again, by Lemma 2.1 and Remark 2.1, (b, u) must be an eigenpair of T .
Let

U(z) = u1 + u2z + . . .+ unz
n−1,

where z ∈ C, be the eigenpolynomial associated with u. Using the assump-
tion eTu = 0, we see that z − 1 divides U(z), i.e. U(z) = (z − 1)Û(z). We
now choose

V (z) = Û(z)(z − ei/b),

which again is a polynomial of degree at most n − 1. Suppose that V (z) =
v1 + v2z + . . .+ vnz

n−1 for some v.

On one hand, noting that

U(z)V (z) =
∣∣∣Û(z)

∣∣∣2 (z − 1)(z − e−i/b),

we have

⟨Tu, v⟩ =
1

2π

∫ π

−π

1

θ
U(eiθ)V (eiθ)dθ

=
1

2π

∫ π

−π

(eiθ − 1)(e−iθ − e−i/b)

θ

∣∣∣Û(eiθ)
∣∣∣2 dθ

=
2e−

i
2b

π

∫ π

−π

sin
(
θ
2

)
sin

(
θ− 1

b

2

)
θ

∣∣∣Û(eiθ)
∣∣∣2 dθ. (9)
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On the other hand, we obtain in a similar fashion that

⟨bu, v⟩ = 2e−
i
2b

π

∫ π

−π

b sin

(
θ

2

)
sin

(
θ − 1

b

2

) ∣∣∣Û(eiθ)
∣∣∣2 dθ. (10)

Hence, by (9), (10), and ⟨Tu, v⟩ = ⟨bu, v⟩, we arrive at∫ π

−π

(
1

θ
− b

)
sin

(
θ

2

)
sin

(
θ − 1

b

2

) ∣∣∣Û(eiθ)
∣∣∣2 dθ = 0.

This last equality, however, leads to a contradiction because of (8) and the

fact that
∣∣∣Û(eiθ)

∣∣∣2 > 0 except at only a finite number of values of θ on the

interval [−π, π]. �

From Lemma 2.1 and Theorem 2.1, we also have

COROLLARY 2.1 Let the matrix A be defined as in (3) with ω > 0 and
S being given by (2). Then, any eigenvector u of A must satisfy eTu ̸= 0. In
particular, any eigenvector of the matrix I(−1) has this property.

Furthermore, on denoting σ(X) the spectrum of a square matrix X ∈
Cn×n, namely the set of its eigenvalues, we can claim

COROLLARY 2.2 Let S and A be defined as in (2) and (3), respectively.
Then

σ(S) ∩ σ(A) = ∅

holds for all ω > 0.

Finally, according to Theorem 2.1, we notice that 0 /∈ σ(A); therefore, it
follows:

COROLLARY 2.3 ([1, Corollary 2.5]) The matrix A given in (3) must be
nonsingular for any ω > 0. In particular, I(−1) is nonsingular.
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3 Concluding Remarks

In this work, we make use of the methodology in [1] by Abu-Jeib and Shores
to give, for the first time, a complete answer to Stenger’s conjecture on the
localization of eigenvalues of the Sinc matrix I(−1).

The matrix A in (3), including the Sinc matrix I(−1) as its special case, is
rich in structure. It consists of a particular rank one modification to a skew
symmetric Toeplitz matrix. S. Friedland, for example, called such a matrix
almost skew symmetric in [5], where he derived remarkable inequalities re-
garding its real eigenvalues. As a matter of fact, the results here have been
built largely by exploiting such a very rich structure through the generating
function approach.

The matrix S is not only Toeplitz skew symmetric but also the so-called
centro skew symmetric. For the symmetric as well as centro symmetric case,
A. Cantoni and P. Butler [4] provided some useful characterizations of the
associated eigenvalues and eigenvectors. It appears that such results may be
extended to the matrix S for us to gain a deeper understanding of its eigen
structure. This appears to be an interesting problem for future research.

Speaking of rank one modifications on a general matrix, we mention that
there are some fascinating recent results concerning spectral changes via the
notion of genericity, see, for example, [6, 8, 9, 12, 13]. In [8, Theorem 2.3], it
states that the following is true for “almost” all — in the sense of genericity,
i.e. except on a set of measure zero — X ∈ Cn×n and (u, v) ∈ Cn × Cn: If

σ(X + uv∗) ∩ σ(X) = ∅, (11)

then all the eigenvalues of X + uv∗ are (algebraically) simple.

In connection with the matrix A given in (3), the above conclusion in-
dicates that the eigenvalues of A are likely all simple as Corollary 2.2 gives
exactly the condition in (11). If this happens to be the case, A will conse-
quently be diagonalizable. In fact, Stenger raised a separate question in [16]
as to whether the Sinc matrix I(−1) is diagonalizable. Similarly, we can ask
the question here as to whether, more generally, the matrix A is diagonaliz-
able, regardless what positive value ω may take. This appears to be another
interesting problem for future research. We mention that in [1], it has been
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shown that the eigenvalues of S are all simple. This, according to the well-
known Bauer-Fike theorem [18, p.192], implies that all the eigenvalues of A
are also simple as long as ω is sufficiently close to zero. Consequently, the
matrix A is diagonalizable for sufficiently small values of ω.

Finally, we remark that the matrix I(−1)D, where D is a diagonal matrix
having a positive diagonal, arises in several applications of Sinc methods. In
the same spirit as the proof of our Lemma 2.1, it is straightforward to show
that all the eigenvalues of I(−1)D lie in the closed right half-plane; also see
[17, p.98]. It is still an open problem, however, as to whether these eigenval-
ues – or, more generally, the eigenvalues of AD – are all located within the
open right half-plane, just as those of A. We think that such a question, too,
deserves further investigation.
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