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Abstract. We define a m-involution to be a matrix K ∈ Cn×n for which Km = I. In this paper,
we investigate the class Sm (A) of m-involutions that commute with a diagonalizable matrix A ∈
Cn×n. A number of basic properties of Sm (A) and its related subclass Sm (A,X) are given, where X
is an eigenvector matrix of A. Among them, Sm (A) is shown to have a torsion group structure under
matrix multiplication if A has distinct eigenvalues and have non-denumerable cardinality otherwise.
The constructive definition of Sm (A,X) allows one to generate all m-involutions commuting with
a matrix with distinct eigenvalues. Some related results are also given for the class S̃m (A) of m-
involutions that anti-commute with a matrix A ∈ Cn×n.
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1. Introduction. Let J represent the exchange matrix of order n, defined by
Ji,j = δi,n−j+1 for 1 ≤ i, j ≤ n where δi,j is the Kronecker delta. If A ∈ Cn×n

commutes with J , then A is called centrosymmetric. Centrosymmetric matrices, which
appear in numerous applications, include the class of symmetric Toeplitz matrices and
the class of bisymmetric matrices. A number of papers (among them, [1], [2], [6], [7],
and [10]) have investigated the generalization where J is replaced by an involutory
matrix K.

More recently, W. F. Trench (in [8] and [9]) investigated the set of complex matri-
ces A that satisfy AK = ζjKA, where ζ is an m-th root of unity, 0 ≤ j ≤ m− 1, and
K’s minimal polynomial is xm−1 for an integer m > 1. Trench referred to such K as
m-involutions, but in this paper we use the term m-involution to refer to any matrix
K for which Km = I. We refer to the set of matrices whose minimal polynomial is
xm − 1 as the non-trivial m-involutions. This terminology is consistent with usage in
the m = 2 case, where the matrices ±I are regarded as trivial involutions.

In this paper, we define a Km-symmetric matrix to be a complex matrix A that
commutes with an m-involutory matrix K. In papers that have studied K2-symmetric
and Km-symmetric matrices, the matrix K is usually considered fixed and the prop-
erties of the matrix A are studied. One difficulty in applying results of this nature
is that except in special cases, it’s typically not easy to discern the Km-symmetry of
a matrix A by mere inspection. In the current paper, we take a somewhat different
approach by fixing A and studying the class Sm (A) of m-involutory matrices K that
commute with it. To begin the investigation, we introduce a constructive subset of
Sm (A) that enables the easy generation of m-involutions that commute with A. Now
the task of identifying the Km-symmetry of a matrix A can, in some cases, be re-
duced to a relatively straightforward computation. We also show that Sm (A) has a
torsion group structure under matrix multiplication if A has distinct eigenvalues and
is infinite otherwise.

If A ∈ Cn×n anti-commutes with the exchange matrix J , then A is called skew-
centrosymmetric or centroskew per [4]. As in the centrosymmetric case, the papers [6],
[7], and [10] investigated the case where J is replaced by a general involution, while
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[8] looked at a broader generalization (mentioned above) that includes the commuting
and anti-commuting cases. This motivated a study of the anti-commuting case, and
so we close this paper by establishing some related results for the class S̃m (A) of
m-involutory matrices K which that anti-commute with A.

2. Preliminaries. In [6], [7], and [10], several K2-symmetric matrix analogs to
well-known results for centrosymmetric matrices were established. For example, dur-
ing the 1960s and 1970s, Collar [4], Andrew [2], and Cantoni and Butler [3] each noted
(in slightly different contexts) that the eigenbasis {xi}ni=1 of a n×n centrosymmetric
matrix A is composed of

⌈
n
2

⌉
symmetric eigenvectors (i.e., xi = Jxi) and

⌊
n
2

⌋
skew-

symmetric eigenvectors (i.e., xi = −Jxi). In [6], this observation was extended to the
situation where J was replaced by a non-trivial involutory matrixK and both A andK
are real symmetric ([5, Lemma 3.11]). This was a direct generalization of the context
considered in [3]. The paper [10] extended this to the Hermitian case for A and K ([8,
Propositions 3.5 and 4.1]). In [7], W. F. Trench strengthened this result ([6, Theorem
7]) by showing that K2-symmetric matrices A have a basis consisting of K-symmetric
(i.e., xi = Kxi) and K-skew-symmetric eigenvectors (i.e., xi = −Kxi) without the
Hermitian condition assumed in [10]. Trench also established the converse, thereby
generalizing a result of Andrew for centrosymmetric matrices ([2, Theorem 2]). We
will refer to these two results of Trench collectively as the Eigenbasis Theorem for
K2-symmetric matrices.

More recently, in [8], Trench extended this result to the class of complex matrices
A which commute with a non-trivial m-involutory matrix K. Let ζ = e2πi/m. His
result ([7, Theorem 13]) states that ifK ∈ Cn×n is non-trivialm-involutory, A ∈ Cn×n

is Km-symmetric, and λ is an eigenvalue of A, then the λ-eigenspace of A has a basis

in the union QA =
m−1∪
j=0

{
x|Kx = ζjx

}
. Conversely, he showed that if a matrix A

has n linearly independent vectors in QA, then A is Km-symmetric. Accordingly,
we will collectively refer to these two more general statements statements as the
Eigenbasis Theorem for Km-symmetric matrices. Following Trench, we will refer to
vectors satisfying Kx = ζrx as (K, r)-symmetric vectors.

In this paper, we use the notation Sm (A) to denote the set of complex m-
involutory matrices K that commute with a complex matrix A. We use the notation
Tp(x) (A) to denote the set of complex m-involutory matrices with minimal polyno-
mial p(x) that commute with A. Note that

Sm (A) =
∪

p(x)|xm−1
p(x)∈C[x]
p(x)monic

Tp(x) (A).

Let α, µ ∈ {0, 1, ..., k − 1} and let R and S be non-trivial m-involutions. In
Trench’s papers [8] and [9], the class of matrices A satisfying the equation

(1) RAS−α = ζµA

are studied. When α = 1, µ = 0, and R = S, the matrices R and S belong to
the set Tp(x) (A) where p(x) = xm − 1. Trench’s focus is on the class of matrices A
satisfying (1), and while he does provide some general results concerning non-trivial
m-involutions, he does not attempt to investigate the collective properties of either
the set Tp(x) (A) or its superset Sm (A).
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3. Construction and Properties of Sm (A,X). For what follows, we assume
that A is diagonalizable. Let A = XΛX−1 where X is an eigenvector matrix of A
and Λ is the diagonal eigenvalue matrix of A. For convenience, we will assume that
each of the columns of X are normalized and that there is a fixed ordering for the
eigenvalues in Λ.

If we wish to construct a non-trivial subset of Sm (A), consideration of simultane-
ous diagonalization and familiarity with the Eigenbasis Theorem for Km-symmetric
matrices leads naturally to an investigation of matrices of the form K = XDX−1,
where D is a diagonal matrix whose diagonal elements belong to the set of m-th roots
of unity.

Definition 3.1. For a fixed eigenvector matrix X of A ∈ Cn×n, we define

Sm (A,X) =
{
XDX−1|D diagonal with Di,i ∈

{
ζj
}m−1

j=0

}
where ζ = e2πi/m.

The following theorem lists some of the more elementary properties concerning
the set Sm (A,X) and its relationship to Sm (A).

Theorem 3.2. For a fixed eigenvector matrix X of A ∈ Cn×n, we have:

(2) Sm (A,X) ⊆ Sm (A) ,

(3) |Sm (A,X) | = mn,

and

(4) S2 (A) =
∪
X

S2 (A,X)

where the union ranges over all possible eigenvector matrices X of A.
Proof. (2) and (3) follow easily from the definition of Sm (A,X).
To show (4), we first note that the trivial involutions ±I in S2 (A) are obtained

using D = ±I for any eigenvector matrix X of A. For any non-trivial involution
K, the Eigenbasis Theorem for K2-symmetric matrices states that there exists an
eigenbasis for A consisting of K-symmetric and K-skew-symmetric eigenvectors. Let
X =

(
x1 x2 . . . xn

)
have columns comprised of such a basis. If we choose

D = (di,j)1≤i,j≤n to be the diagonal matrix having −1 at element dj,j for each K-
skew-symmetric eigenvector xj and 1 for the remaining diagonal elements, then K =
XDX−1. That is, we recover K with this choice of D.

So, for any non-trivial involutory K ∈ S2 (A) that there exists an eigenvector
matrix X of A and choice of D such that K = XDX−1. This shows that S2 (A) ⊆∪
X

S2 (A,X), and (2) shows the reverse inclusion.

In the proof of the third assertion of Theorem 3.2, we showed how one could
choose the elements of a diagonal matrix D to recover a matrix K ∈ S2 (A), given an
eigenvector matrix for A consisting of K-symmetric and K-skew-symmetric columns.
We now state the analagous “recovery” theorem for a nontrivial m-involution K ∈
Sm (A). The proof follows along the same lines as that for the S2 (A) case so we omit
it.

Theorem 3.3. Let A ∈ Cn×n be Km-symmetric with K a non-trivial m-
involution. Suppose X =

(
x1 x2 . . . xn

)
is an eigenvector matrix for A, where
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each column xj is (K, rj)-symmetric for some 0 ≤ rj ≤ m − 1. Since A is Km-
symmetric, such an X is guaranteed to exist by the Eigenbasis Theorem for Km-
symmetric matrices. Then there exists a diagonal matrix D = (di,j)1≤i,j≤n such that

K = XDX−1 and whose diagonal elements d(j, j) satisfy dj,j = ζn−rj . As usual,

ζ = e2πi/m.
The following corollary is immediate from Theorem 3.3.
Corollary 3.4. Let A ∈ Cn×n be Km-symmetric where K is a non-trivial m-

involution. If Xa and Xb are eigenvector matrices of A, each of whose columns is
(K, rj)-symmetric for some 0 ≤ rj ≤ m− 1, then K ∈ Sm (A,Xa) ∩ Sm (A,Xb)

Example. If A is a centrosymmetric matrix and X is any eigenvector matrix of A
comprised of symmetric and skew-symmetric vectors, then the exchange matrix J is
guaranteed to be found in S2 (A,X).

Equations (2) and (3) of Theorem 3.2 show that after one determines an eigen-
vector matrix X and its inverse X−1 for a diagonalizable matrix A, one can then
identify mn different Km-symmetries of A by simply computing the matrix products
XDX−1 where one varies the diagonal elements of the matrix D over the different
combinations of m-th roots of unity. This computation can be further made more
efficient by making the following observations.

1. Let K = XDX−1 and K̃ = XD̃X−1 be members of Sm (A,X), where the
diagonal matrices D = diagonal(dii) and D̃ = diagonal(d̃ii) differ only by a
factor of ζ in their kth diagonal element. If d̃kk = ζdkk, and we denote the
i, j element of X−1 by yij , then element k̃ij of K̃ is related to element kij of
K by

k̃ij = kij + (ζ − 1)dkkxikykj .

So, as one iterates through the products XDX−1 by varying D, if an update
to D only involves a ζ-scaling of a single diagonal element, then deriving an
updated K̃ from K requires just 3n2 multiplications and n2 + 1 additions.

2. If K ∈ Sm (A,Xj), then ζrK ∈ Sm (A,Xj) for 0 ≤ r ≤ m − 1. To avoid the
unnecessary computation of these scalar multiples of K, we can simply fix a
diagonal element of D at 1 (say d11) and vary the other diagonal elements
over the m-th roots of unity. To see this, let K = XDX−1 be an element of
Sm (A,Xj) for some D = diagonal

(
ζr1 ζr2 . . . ζrn

)
. Then

ζ−r1KX =
(
x1 ζr2−r1x2 . . . ζrn−r1xn

)
.

This shows that there exists a matrix K̃ ∈ Sm (A,Xj) such that K = ζrK̃

where K̃ = XD̃X−1 and D̃ has a value of 1 for its d1,1 element. Employing
this observation reduces the number of matrix product computations needed
to enumerate the elements of Sm (A,Xj) down by a factor of m.

At this point, after generating the elements of Sm (A,X), one can then select dis-
tinguished elements K from the set and apply known theoretical results for Km-
symmetric matrices to a particular study involving A.

Since Sm (A,X) is finite, it is not surprising that one can make some fairly strong
statements about its elements. The next theorem lists two such statements and shows
that when a matrix A ∈ Cn×n has distinct eigenvalues that these statements apply
to Sm (A) itself.

Theorem 3.5. If A ∈ Cn×n is diagonalizable with an eigenvector matrix X, then
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1. If A has distinct eigenvalues (hence, is diagonalizable), then

(5) Sm (A) = Sm (A,X)

2. The number of non-trivial m-involutory matrices in Sm (A,X) is

(6)
m∑
j=0

(−1)
j

(
m
j

)
(m− j)

n
.

Proof. The proof of the first assertion (5) is elementary and has been omitted.
For the second assertion (6) of Theorem 3.5, we wish to compute the cardinality

of Tp(x) (A) when the minimal polynomial p(x) equals xm − 1 and has distinct roots.
To determine this, one simply needs to count the number of diagonal matrices D
whose set of diagonal elements contain at least one of each of the m-th roots of unity.
This can be accomplished by a standard inclusion-exclusion enumeration.

We now characterize the algebraic structure of Sm (A,X), which as we’ve shown
in Theorem 3.5, equals Sm (A) when A has distinct eigenvalues.

Theorem 3.6. Let A ∈ Cn×n be diagonalizable with an eigenvector matrix X.
Then the set Sm (A,X) under matrix multiplication forms a torsion group Gm (A,X)

that is isomorphic to
n
⊕
i=1

Zm.

Proof. That Sm (A,X) is an abelian group follows easily from its definition. The
mapping

X

 ζj1 0
. . .

0 ζjn

X−1 7→ (j1)⊕ . . .⊕ (jn)

is clearly a group homomorphism from Gm (A,X) to
n
⊕
i=1

Zm with a trivial kernel,

thereby establishing the isomorphism.
Corollary 3.7. If A is centrosymmetric with distinct eigenvalues, then the

involutory matrices that commute with it are centrosymmetric.
Proof. This follows from equation (5) and Theorem 3.6 since the exchange matrix

J is a member of the abelian group G2 (A,X).
It’s easy to produce examples that show that Corollary 3.7 fails if the restriction

that A has distinct eigenvalues is violated. However, it’s also not hard to show that
Corollary 3.7 holds without the restriction to involutory matrices. We start by defining
the simultaneously diagonalizable family R (A,X).

Definition 3.8. For a fixed eigenvector matrix X of A ∈ Cn×n, let

R (A,X) =
{
XDX−1|D ∈ Cn×n diagonal

}
.

It’s clear that R (A,X) is an superset of Sm (A,X) for every m, and that R (A,X)
is a commutative monoid under matrix multiplication.

Lemma 3.9. Suppose A ∈ Cn×n has distinct eigenvalues. If B ∈ Cn×n commutes
with A, then B ∈ R (A,X).

Proof. Since Λ = X−1AX has distinct entries and B commutes with A, it follows
that X−1BX commutes with Λ. The only matrices which commute with diagonal
matrices with distinct entries are diagonal matrices. Therefore X−1BX is diagonal,
and so B ∈ R (A,X).
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Theorem 3.10. If A is centrosymmetric with distinct eigenvalues, then the ma-
trices that commute with it are centrosymmetric.

Proof. Suppose matrices Bi and Bj commute with A. From Lemma 3.9, we have
that Bi commutes with Bj . Letting Bi = J shows that Bj is centrosymmetric.

Corollary 3.11. If A is real, bisymmetric and has distinct eigenvalues, then
the matrices that commute with it are bisymmetric.

Proof. If A has real entries and A = AT , then X can be taken to be a matrix
with real entries and X−1 = XT . If B commutes with A, then XTBX must be a
diagonal matrix from Lemma 3.9. Hence

XTBTX = (XTBX)T = DT = D = XTBX.

Multiplying on the left by X and the right by XT gives BT = B. This and Theo-
rem 3.10 yield the result.

4. Sm (A,X) and the Non-Distinct Eigenvalue Case. When a diagonaliz-
able matrix A has distinct eigenvalues, equation (5) implies that Theorem 3.6 is a
result about Sm (A) itself. If, on the other hand, A has at least one eigenvalue with
multiplicity greater than one, several of the nice algebraic properties of Theorem 3.6
no longer hold. In particular, commutativity and closure do not hold in general for
Sm (A), and the cardinality of Sm (A) will be infinite. The underlying reasons for the
latter are that

∪
X

Sm (A,X) ⊆ S2 (A) from (2), that there are now infinitely many

choices for the normalized columns of A’s eigenvector matrix X, and that Sm (A,Xi)
and Sm (A,Xj) can differ when Xi and Xj differ. We will be more precise about this
in what follows.

First, however, we prove a statement about the commonality between the sets
Sm (A,Xi) and Sm (A,Xj). Since the identity matrix belongs in every set Sm (A,X),
they are clearly not disjoint. In fact, one can always find at least m elements in
common between any pair of these sets, and when A does not have distinct eigenvalues
a larger lower bound can be established. We begin by establishing a preliminary
lemma.

Lemma 4.1. Let Xi ∈ Cn×n and Xj ∈ Cn×n be nonsingular matrices where the
first 0 ≤ r ≤ n columns of Xj are a linear combination of the first r columns of Xi

arising from right multiplication by a nonsingular linear transformation which leaves
the remaining columns of Xi fixed. Let D ∈ Cn×n be a diagonal matrix of the form

D =

(
αIr 0
0 D22

)
where Ir is the r×r identity matrix and α is a fixed complex number. Then XiDX−1

i =
XjDX−1

j .
Proof. By hypothesis, Xj = XiM where

(7) M =

(
M11 0
0 In−r

)
,

with M11 ∈ Cr×r nonsingular and where In−r is the (n− r)× (n− r) identity matrix.
Let

(8) Xi =

(
X11 X12

X21 X22

)
and X−1

i =

(
Y11 Y12

Y21 Y22

)
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under the same partitioning as D and M . If we write D11 in place of αIr to allow us to
express the forthcoming equalities more generally, then we see that K = XjDX−1

j =

XiMDM−1X−1
i is comprised of the blocks

(9) K11 = X11M11D11M
−1
11 Y11 +X12D22Y21

(10) K12 = X11M11D11M
−1
11 Y12 +X12D22Y22

(11) K21 = X21M11D11M
−1
11 Y11 +X22D22Y21

(12) K22 = X21M11D11M
−1
11 Y12 +X22D22Y22

This is easily shown to equal XiDX−1
i .

Theorem 4.2. Let A ∈ Cn×n be diagonalizable and let its eigenvalues of mul-
tiplicity greater than one comprise a set of values V = {vk}sk=1 where 0 ≤ s < n
(V can be empty). Let µk > 1 be the multiplicity of A’s eigenvalue with value vk
for 1 ≤ k ≤s. Then if Xi and Xj are each eigenvector matrices of A, we have that

|Sm (A,Xi)
∩

Sm (A,Xj)| ≥ mn−r+s where r =
s∑

i=1

µi.

Proof. Recall that the eigenvector matrices Xi and Xj of A are assumed to have
normalized columns. So, aside from scalar multiples of magnitude one, the columns
of Xi and Xj can only differ in the columns corresponding to the eigenvalues of
multiplicity greater than one.

For convenience, we will assume that the diagonal elements of the eigenvalue ma-
trix Λ = diag (λk)1≤k≤n are arranged so that the distinct eigenvalues λi are positioned
in the last n − r diagonal elements and the eigenvalues of multiplicity greater than
one are set up consecutively in the first r diagonal elements as

Λjj =



v1 for 1 ≤ j ≤ µ1

v2 for 1 + µ1 ≤ j ≤ µ1 + µ2

...

vs for 1 +
s−1∑
i=1

µi ≤ j ≤ r

This establishes an ordering for the columns of the matrices Xi and Xj .
Consider XiDX−1

i ∈ Sm (A,Xi) and XjDX−1
j ∈ Sm (A,Xj) where D has the

form

(13) D =

(
ζkI11 0
0 D22

)
,

ζ = e2πi/m, and k is an integer in the range 0 ≤ k ≤ m−1. Application of Lemma 4.1
shows that XiDX−1

i = XjDX−1
j . Since there are m choices for ζkI11 and mn−r

choices for D22, we have mn−r+1 matrices D of the form (13) for which XiDX−1
i =

XjDX−1
j .

We now consider the 2 × 2 block repartitioning of D where the new upper-left
block is the upper-left (r−µs)× (r−µs) portion of the previous r×r upper-left block
ζkI11. This new partitioning effectively means that the last µs elements of D11 in the
previous partitioning have been transferred to the D22 block of the new partitioning.
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Another application of Lemma 4.1 shows that if D has the form (13) under the new
partitioning, then here too XiDX−1

i = XjDX−1
j . The number of choices for D

under this partitioning that are distinct from that found in the previous partitioning
is (m − 1)mn−r+1. So, the number of choices for D under the two partitionings is
mn−r+1 + (m− 1)mn−r+1 = mn−r+2.

We can now proceed inductively, reducing the upper-left block’s size by µj at each
stage, for j = s− 1 through j = 1.

Corollary 4.3. Let Xi and Xj be any two eigenvector matrices of A.
1. In the case where all eigenvalues of A are the same (i.e., multiplicity n),

|Sm (A,Xi)
∩

Sm (A,Xj)| ≥ m.
2. In the case where all eigenvalues of A are distinct, Sm (A,Xi) = Sm (A,Xj).
Proof. For the first assertion, apply Theorem 4.2 with r = n and s = 1. The

m elements found between any pair of Sm (A,Xi) and Sm (A,Xj) are precisely the
matrices ζjI for 0 ≤ j ≤ m− 1.

For the second assertion, apply Theorem 4.2 with r = 0 and s = 0 together with
equation (3).

A cursory study of the situation where A is a multiple of the identity matrix
In for n > 1 is sufficient to generate examples where commutativity and closure fail
for elements of Sm (A) under matrix multiplication. It’s also not hard to show that
there are infinitely many m-involutions of every dimension greater than one, thereby
showing that |Sm (αIn) | is infinite for every n > 1. The latter statement, in fact,
holds for Sm (A) where A is any diagonalizable matrix in Cn×n with an eigenvalue of
multiplicity greater than one.

Theorem 4.4. Suppose A ∈ Cn×n is diagonalizable and has at least one eigen-
value of multiplicity greater than one. Then the cardinality of the set Sm (A) is non-
denumerable.

Proof. As in the proof of Theorem 4.2, we assume that the elements of the
diagonal eigenvalue matrix Λ = (Λij)1≤i,j≤n are arranged so that any eigenvalues of
multiplicity greater than one are placed consecutively in the upper-left. Let us reuse
the partitions (7) and (8) where we take the size of the upper-left block to be 2× 2.
We will also use the diagonal matrix partition

D =

(
D11 0
0 D22

)
where we take

D11 =

(
1 0
0 ζ

)
with ζ = e2πi/m and consider D22 fixed.

Let

M11 =

(
m11 m12

m21 m22

)
and define M̃ = M11D11M

−1
11 .

Our expression for K ∈ Sm (A) is comprised of the block equations (9), (10), (11),
and (12). Since the only degrees of freedom in these equations are the elements m11,
m12, m21, and m22, we may confine our attention to the products

(14) X11M̃Y11
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(15) X11M̃Y12

(16) X21M̃Y11

(17) X21M̃Y12.

Computing M̃ = M11D11M
−1
11 , we find

(18) M̃ = µ

(
m11m22 − ζm12m21 (ζ − 1)m11m12

(1− ζ)m21m22 −m12m21 + ζm11m22

)
where µ = (m11m22 −m12m21)

−1. For convenience, assume the partitioning

M̃ =

(
m̃11 m̃12

m̃21 m̃22

)
.

In (18), we note that the magnitude of the complex number m̃12 ranges contin-
uously over [0,∞) by (for example) setting m22 = 0, fixing m12 and m21 at nonzero
values, and letting m11 vary. Similarly, we note that the magnitude of m̃21 ranges
continuously over [0,∞) by setting m11 = 0, fixing m12 and m21 at nonzero values,
and letting m22 vary.

Let z = m11m22 and set m12m21 = 1. Under this choice, m̃11 becomes the
complex function z−ζ

z−1 and m̃22 becomes the complex function ζz−1
z−1 . From this, we

see that here too, the magnitude of the elements m̃11 and m̃22 each range continuously
over [0,∞).

From (8), we observe that the blocks X11 and X21 cannot be simultaneously zero.
Similarly, Y11 and Y12 cannot be simultaneously zero. This leads us to consider four
separate cases. Namely,

1. X11 ̸= 0 and Y11 ̸= 0
2. X11 ̸= 0 and Y12 ̸= 0
3. X21 ̸= 0 and Y11 ̸= 0
4. X21 ̸= 0 and Y12 ̸= 0

At least one of these cases must be true.
For Case 1, we focus on equation (14). Since X11 ̸= 0, there exists at least one

row of X11 that is nonzero. Pick one such row, and let it have values x =
(
α β

)
.

Since Y11 ̸= 0, there exists at least one column of Y11 that is nonzero. Pick one such

column and let it have values yT =
(
γ δ

)T
. Then,

(19) xM̃y = γαm̃11 + γβm̃21 + δαm̃12 + δβm̃22

Since α and β are not simultaneously zero and γ and δ are not simultaneously zero,
at least one of the four summands in (19) must not be identically nonzero. If only
one summand is nonzero, since we know the magnitude of m̃11, m̃21, m̃12, and m̃22

each range continuously over [0,∞) for varying choices of m11, m12, m21, and m22,
we have that xM̃y assumes a non-denumerable set of values. So, suppose at least two
of the four summands in (19) are not identically zero. We wish to show that xM̃y
cannot be limited to a discrete set of values. Equation (18) shows that m̃11, m̃21,
m̃12, and m̃22 are continuous complex valued functions, and only m̃11 and m̃22 can
be linearly related (e.g., when ζ = −1). But if the coefficients of m̃11 and m̃22 are
both nonzero in the linear combination (19), then the coefficients of m̃21 and m̃12
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will also be nonzero. Therefore, if at least two of the four summands in (18) are
nonzero, there will be a nonzero term involving either the product µm11m12 (i.e.,
m̃12) or the product µm21m22 (i.e., m̃21). Since only one of the four summands in
(19) involves the product µm11m12 and only one of the four summands (19) involves
the product µm21m22, the product xM̃y cannot be limited to a discrete set of values.
We conclude that the product in (14) assumes a non-denumerable number of values
under the assumptions of Case 1.

The treatment of Cases 2, 3, and 4 are treated in the same manner, with Case
2 dealing with equation (15), Case 3 dealing with equation (16), and Case 4 dealing
with equation (17). Since the form of D used in the demonstration occurs in every
set Sm (A,X) for which A has dimension two or more, and since at least one of the
four cases must be true this completes the proof.

5. The Anti-Commuting Case. In addition to studying K2-symmetry, the
papers [6], [7], and [10], also investigated matrices A that satisfied the anti-commuting
relationship AK = −KA where K is an involution (the K2-skew-centrosymmetric
matrices). It would therefore be desirable to obtain results similar to those found for
Sm (A) that hold for the set of complex m-involutions that anti-commute with a fixed
complex matrix A ∈ Cn×n.

Let us denote this set as S̃m (A) and suppose K is an m-involution. Some facts
are immediately apparent. From a trivial determinant argument, we see that if n is
odd and A is nonsingular, then S̃m (A) is empty. With just a little more effort, since
A = KmA = (−1)mAKm = (−1)mA, if m is odd it then follows that S̃m (A) is empty
except when A is the zero matrix, in which case S̃m (A) is non-denumerable for n > 1.
So, we only need to focus on the case where m is even.

A deeper study of S̃m (A) requires a characterization of the structure of both A
and K when AK = −AK. To accomplish this, we turn to the Jordan decomposition
of A Ã = S−1AS of A, where

Ã = diag(J1(λ1), . . . ,Jk(λk)),

the Jordan blocks Ji are ni×ni, and n =
∑

ni. Let K̃ be any matrix of the same size
as A, and block partition it so that its K̃ij block is ni × nj . If we let K = SK̃S−1,

then AK = −KA if and only if ÃK̃ = −K̃Ã if and only if JiK̃ij = −K̃ijJi for all i, j.

The following lemma helps describe the structure of the blocks Ji and K̃ij whenever

ÃK̃ = −K̃Ã.
Lemma 5.1. Suppose B ∈ Cm×n, Im is the m × m identity matrix, and Nm is

the m×m matrix with ones directly above the main diagonal and zeros elsewhere. Let
bi,j denote the i, j element of the matrix B. Then

1. If λi + λj ̸= 0, then

(20) (λiIm +Nm)B = −B(λjIn +Nn)

if and only if B = 0.
2. If λi + λj = 0, then

(21) (λiIm +Nm)B = −B(λjIn +Nn)

if and only B is upper triangular, where the components of columns 1 through
n−m are zero if n > m, the components of rows m+1 through n are zero if
n < m, and each diagonal of the upper triangle has constant magnitude and
alternates in sign along the diagonal (i.e., bi,j = −bi+1,j+1).

https://www.researchgate.net/publication/222670070_Characterization_and_properties_of_matrices_with_generalized_symmetry_or_skew_symmetry?el=1_x_8&enrichId=rgreq-78b6135069ddb0a618f50fc67510eefc-XXX&enrichSource=Y292ZXJQYWdlOzIyMTY3NTE2MDtBUzoyNTczOTY2NjQ2OTY4MzJAMTQzODM3OTU1NTAyMA==
https://www.researchgate.net/publication/233426846_A_Spectral_Characterization_of_Generalized_Real_Symmetric_Centrosymmetric_and_Generalized_Real_Symmetric_Skew-Centrosymmetric_Matrices?el=1_x_8&enrichId=rgreq-78b6135069ddb0a618f50fc67510eefc-XXX&enrichSource=Y292ZXJQYWdlOzIyMTY3NTE2MDtBUzoyNTczOTY2NjQ2OTY4MzJAMTQzODM3OTU1NTAyMA==
https://www.researchgate.net/publication/233426828_Spectral_Characterizations_for_Hermitian_Centrosymmetric_K-Matrices_and_Hermitian_Skew-Centrosymmetric_K-Matrices?el=1_x_8&enrichId=rgreq-78b6135069ddb0a618f50fc67510eefc-XXX&enrichSource=Y292ZXJQYWdlOzIyMTY3NTE2MDtBUzoyNTczOTY2NjQ2OTY4MzJAMTQzODM3OTU1NTAyMA==
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Proof. To prove the first assertion, first rewrite equation (20) as

(22) ((λi + λj)Im +Nm)B +BNn = 0.

Multiplying (22) on the right by N j
n for 1 ≤ j ≤ n − 1 gives n − 1 equalities of the

form

(23) ((λi + λj)Im +Nm)BN j
n +BN j+1

n = 0.

Since Nn
n = 0 and (λi + λj)Im + Nm is nonsingular, if we let j = n − 1 in equation

(23), we have that BNn−1
n = 0. Substituting this into equation (23) for j = n− 2, we

see that BNn−2
n = 0. Continuing in this manner, we arrive at BNn = 0 when j = 1

which, when substituted into (22), gives us B = 0.
To prove the second assertion, we first simplify equation (21) as

(24) NmB = −BNn.

Comparison of the first column of each side of (24) shows that the matrix B is zero
in the first column below the b1,1 element. Equating the j-th column of each side of
(24) gives

(25) (b2,j , b3,j , . . . , bn,j , 0)
T = −(b1,j−1, b2,j−1, . . . , bn−1,j−1, bn,j−1)

T .

This shows that the diagonals of B are of equal magnitude and alternate in sign, and
are zero below the main diagonal. Finally, we note that the m-th row of (24) shows
that bm,1 = bm,2 = · · · = bm,n−1 = 0. Combining this with (25) shows that columns
one through n−m are zero when n > m.

The next lemma will be useful in the determination of the cardinality of S̃m (A).
Lemma 5.2. Suppose B ∈ Cn×n has the form described in Lemma 5.1 and n > 1.

That is, B is upper triangular and each element satisfies bi,j = −bi+1,j+1. Then,
there are uncountably many involutory B.

Proof. Let C = B2. Then

ci,j =

j∑
k=i

bi,kbk,j =

j−i+1∑
k=1

(−1)
k+1

b1,kb1,j−k−i+2

Since cii,j1 = ci2,j2 whenever j2 − i2 = j1 − i1, we see that C is upper triangular
Toeplitz and so we can restrict our attention to the values of the first row of C. For
convenience, let us write cj for c1,j and bj for b1,j . Then,

cj =

j∑
k=1

(−1)
k+1

bkbj−k+1.

When j is even, cj = 0. When j = 2m+ 1, we have

(26) c2m+1 = (−1)
m+1

b2m+1 + 2

m∑
k=1

(−1)
k+1

bkb2m−k+2.

We want C = I. The constraint c1 = 1 yields two solutions for b1. If n = 2,
then b2 is unconstrained and we are done. Assume n > 2. Since the solutions for b1
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can be substituted back into (26), the equation c3 = 0 becomes a complex bivariate
quadratic in b2 and b3 which has uncountably many solutions for b2 and b3. This
process can be continued as m is incremented. Each time m is increased by one, the
solutions of the previous iterations can be subsituted into (26) and two new unknowns
b2m and b2m+1 appear, resulting in another bivariate quadratic for which there are
uncountably many solutions.

Theorem 5.3. Given A ∈ Cn×n and an m-involution K ∈ Cn×n:

1. Let n = 1. If A is the number zero, then S̃m (A) contains the m-th roots of
unity. Otherwise, S̃m (A) is empty.

2. Suppose n > 1 and let m > 1 be an odd integer. If A is the zero matrix, then
S̃m (A) is non-denumerable. Otherwise, S̃m (A) is empty.

3. Suppose n > 1 and let m > 1 be an even integer. If the non-zero eigenvalues
of A come in pairs of opposite sign where the corresponding pairs have Jordan
blocks of equal size, then the cardinality of the set S̃m (A) is non-denumerable.
Otherwise S̃m (A) is empty.

Proof. The first assertion is trivial, while the second assertion’s proof was given
at the beginning of this section. We proceed with the proof of the third assertion.

From Lemma 5.1, we see that if A anti-commutes with K then its nonzero eigen-
values must come in pairs of opposite sign where the corresponding pairs have Jordan
blocks of equal size. So, to demonstrate the theorem’s third assertion we only need
to show that S̃m (A) is non-denumerable when A satisfies this condition. For conve-
nience, we will assume that the pairs of Jordan blocks with eigenvalues of opposite
sign appear consecutively along the diagonal of Ã. The proof will be broken into
several cases.

1. Case: Ã is the zero matrix.
2. Case: Ã has all eigenvalues zero and has at least Jordan block that is m×m

where m > 1.
3. Case: Ã has at least one pair of Jordan blocks for non-zero eigenvalues of

opposite sign that are both m×m where m > 1.
4. Case: All Jordan blocks of Ã corresponding to non-zero eigenvalues are 1×1.

Case 1 is trivial, so we move on to Case 2. For Case 2, we consider a particular
class of block-diagonal matrices K̃ whose diagonal blocks are the same size as those
of Ã. Assume without loss of generality that an m × m Jordan block of Ã, where
m > 1, occupies the 1, 1 block position. Consider the set of block matrices whose
1, 1 block is an upper triangular involution whose elements satisfy ki,j = −ki+1,j+1,
and whose remaining diagonal blocks are diagonal matrices with alternating values of
1 and −1. The elements of this set are clearly involutions, they anti-commute with
Ã since their form satisfies the conditions of Lemma 5.1, and Lemma 5.2 shows that
there are uncountably many choices for the 1, 1 block. Since m is even, this set of
involutions belongs to S̃m (A) and so we are done with this case.

Case 3. Assume without loss of generality that the 1, 1 and 2, 2 Jordan block
positions of Ã are occupied by blocks corresponding to a positive-negative eigenvalue
pair and whose block sizes are m×m where m > 1. We choose the 1, 2 and 2, 1 blocks
of K̃ such that K̃1,2 = K̃2,1 and K̃1,2 and K̃2,1 are upper triangular involutions whose

elements satisfy ki,j = −ki+1,j+1. For the remaining Ã Jordan block pairs in the i, i

and i+ 1, i+ 1 positions, pick the K̃ blocks in the i, i+ 1 and i+ 1, i positions to be
identical diagonal matrices with alternating 1’s and −1’s on their diagonals. For the
Ã blocks in the i, i positions corresponding to zero eigenvalues, let the i, i block of K̃
also be diagonal with alternating 1’s and −1’s. Assume the remaining blocks of K̃ are
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zero. Then K̃ is an involution, Lemma 5.2 shows that there are uncountably many
choices for K̃’s 1, 1 and 2, 2 blocks, and Lemma 5.1 shows that K̃ anti-commutes with
Ã. As noted in Case 2, these involutions belong to S̃m (A).

Case 4. Assume without loss of generality that the 1, 1 and 2, 2 Jordan block
positions of Ã are occupied by 1 × 1 blocks corresponding to a positive-negative
eigenvalue pair. Pick elements k1,2 and k2,1 of K̃ such that k1,2k2,1 = 1. For the

remaining 1× 1 Jordan block pairs of Ã in the i, i and i+ 1, i+ 1 positions, pick the
elements ki,i+1 and ki+1,i to be 1. For the Ã blocks in the i, i positions corresponding

to zero eigenvalues, let the i, i block of K̃ be diagonal with alternating 1’s and −1’s (as
in Case 3) and assume the remaining blocks of K̃ are zero. Then K̃ is an involution,
there are uncountably many choices for k1,2 and k2,1, and Lemma 5.1 shows that K̃

anti-commutes with Ã. As noted in Case 2, these involutions belong to S̃m (A).
Since these results for Ã and K̃ in Cases 1-4 translate directly into anti-commuting

results for A and K, we are done.

Lemma 5.1, together with the m-involution constraint, characterize the matrices
K̃ which in turn characterizes the elements of S̃m (A). This characterization can then
be used to develop an algorithm for generating subsets of S̃m (A). For example, after
computing the Jordan decomposition Ã of A, one could construct examples of K̃ as
follows. For the Ã Jordan block pairs corresponding to non-zero eigenvalues in the i, i
and i+ 1, i+ 1 block positions, pick the K̃ blocks in the i, i+ 1 and i+ 1, i positions
to be identical diagonal matrices whose 1, 1 diagonal element is an m-th root of unity
and whose subsequent diagonal elements alternate in sign. For the Ã blocks in the
i, i positions corresponding to zero eigenvalues, let the i, i block of K̃ also be diagonal
whose 1, 1 diagonal element is an m-th root of unity and whose subsequent diagonal
elements alternate in sign. Assume the remaining blocks of K̃ are zero.

Of course, there are many other elements of S̃m (A) that this particular construc-
tion of K̃ does not consider. For example, other blocks of K̃ may be nonzero, in
particular if there multiple Jordan blocks of Ã corresponding to a particular eigen-
value value. Also, it’s not necessary for the blocks of K̃ to be diagonal. The example
construction described in the previous paragraph could be modified to include such
possibilities. The main drawback to this construction, however, is its reliance on the
Jordan decomposition, which is known to be very sensitive numerically. Construct-
ing an efficent and stable algorithm for generating elements of S̃m (A) that does not
rely on first computing the Jordan decomposition of A is a possible topic for future
investigation.

6. Concluding Remarks. This paper has explored some of the fundamental
properties of the class Sm (A) of m-involutory matrices that commute with a given
diagonalizable matrix A. The constructive nature of the definition of Sm (A,X) allows
one to easily generate numerous (in some cases all) m-involutions commuting with A.
By providing a constructive means to generate elements of Sm (A), it now becomes
easier to identify the types Km-symmetry satisfied by a matrix A and thereby use the
body of results that has accumulated in recent years regarding Km-symmetry. Other
results were given for the class S̃m (A) of m-involutory matrices that anti-commute
with A. It is hoped that the results obtained in this paper will lead to additional
insights and research related to the class Sm (A), S̃m (A), the study of Km-symmetric
matrices, and their applications.
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Appendix A. An Open Question (Unpublished Addendum). Let A ∈
Cn×n be diagonalizable with an eigenvector matrix X. Theorem 4.4 shows that
when the matrix A has at least one eigenvalue of multiplicity greater than one that
there exists a non-denumerable number of distinct sets Sm (A,X) as X varies over all
possible eigenvector matrices of A. While the sets Sm (A,X) clearly have non-trivial
overlap (and Theorem 4.2 gives a lower bound on the cardinality of the intersection),
no attempt was made earlier to characterize the interaction between unshared elements
of distinct Sm (A,Xi) and Sm (A,Xj).

The following is a basic open conjecture regarding this interaction:
Conjecture A.1. Let A ∈ Cn×n be diagonalizable and suppose Ki ∈ Sm (A,Xi)

and Kj ∈ Sm (A,Xj), where Ki /∈ Sm(A,Xi) ∩ Sm(A,Xj) and Kj /∈ Sm(A,Xi) ∩
Sm(A,Xj). Then there does not exist an eigenvector matrix Xk of A where either
KiKj ∈ Sm (A,Xk) or KjKi ∈ Sm (A,Xk) is satisfied, and Sm (A,Xk) ̸= Sm (A,Xi)
and Sm (A,Xk) ̸= Sm (A,Xj).

Appendix B. The Jordan Block Structure of Anti-Commuting Matrices
(Unpublished Addendum). Assume that the matrix A ∈ Cn×n is not the zero
matrix. When S̃m (A) is non-empty, part three of Theorem 5.3 asserts that any
nonzero eigenvalues of A must appear in positive and negative pairs and that the
Jordan blocks associated with each pairing must have identical block size. A proof of
this simple fact, which was omitted earlier, is provided in this appendix.

The statement that we’ll prove, which is somewhat more general than what is
needed for Theorem 5.3, is given in the following lemma.

Lemma B.1. Let K ∈ Cn×n be nonsingular, and suppose AK = −KA. Then the
nonzero eigenvalues of A must appear in positive-negative pairs, and each Jordan block
for an eigenvalue λ ̸= 0 must have a corresponding Jordan block for −λ of identical
size.

Proof. Given a complex number λ, letGλ = {x ∈ Cn| (A− λI)
k
x = 0 for some k >

0} be the generalized eigenspace corresponding to λ. For any x ∈ Gλ and k > 0 such

that (A− λI)
k
x = 0, we have

(27) 0 = K (A− λI)
k
x = (−A− λI)

k
Kx = (−1)

k
(A+ λI)

k
Kx.

Therefore, Kx ∈ G−λ and so K(Gλ) ∈ G−λ.
If λ is an eigenvalue of A, then its multiplicity m(λ) equals the dimension, d(Gλ),

of Gλ. Therefore,

m (λ) = d (Gλ) = d (KGλ) ≤ d (G−λ) = m (−λ)

where the second equality follows from the nonsingularity of K. Since −λ is an
eigenvalue of A by (27) with k = 1, we can apply the same argument to −λ to get
that m(−λ) ≤ m(λ). Therefore the multiplicity of λ and −λ is the same.

Now let Bλ =
{
x, (A− λI)x, . . . , (A− λI)

k−1
x
}

be a cyclical basis for a k-

dimensional Jordan block of A for the eigenvalue λ. In other words, (A− λI)k−1x ̸= 0,
(A− λI)kx = 0, and x is not in the range of (A− λI).

We wish to show that B−λ =
{
Kx, (A+ λI)Kx, . . . , (A+ λI)

k−1
Kx

}
is a cycli-

cal basis for a k-dimensional Jordan block of A corresponding to −λ, where x is the



COMMUTING AND ANTI-COMMUTING m-INVOLUTIONS 15

same vector used to construct Bλ. First, note that

(A+ λI)
k−1

Kx = (−1)
k−1

K (A− λI)
k−1

x ̸= 0

since K is non-singular. Similarly,

(A+ λI)
k
Kx = (−1)

k
K (A− λI)

k
x = 0.

Now suppose that Kx = (A+ λI)y for some y. Then,

Kx = (A+ λI)KK−1y = −K(A− λI)K−1y.

In other words, x = −(A− λI)K−1y, which contradicts the fact that x is not in the
range of (A− λI). Therefore, Kx is not in the range of (A+ λI), and we conclude
that B−λ is in fact a cyclical basis for a Jordan block of the same size as Bλ.

Clearly, m(λ) is equal to the sum of the size of all Jordan blocks for the eigenvalue
λ, and m(−λ) is equal to the sum of the size of all Jordan blocks for the eigenvalue
−λ. Since we’ve already established that m(λ) = m(−λ), the lemma is proved.

Appendix C. Some Simple Examples Illustrating the Construction of
Elements in S̃m (A) (Unpublished Addendum). As before, we let S̃m (A) denote
the class of m-involutions that anti-commute with a fixed matrix A ∈ Cn×n. In what
follows, assume that the matrix A is not the zero matrix.

Although not explicitly spelled out earlier, Lemma 5.1 provides a means by which
elements of S̃m (A) can be constructed for n > 1 and even m ≥ 2 (as noted in
Theorem 5.3, S̃m (A) is empty when both A is nonzero andm is odd are simultaneously
true). The proof of Theorem 5.3 and some of its subsequent discussion are suggestive
of how this construction can be performed. In this appendix, we provide some simple
examples to make this more concrete for the interested reader.

Let Ã = X−1AX denote the Jordan canonical form of A. If ÃK̃ = −K̃Ã for
some m-involution K̃, then it’s clear that K = XK̃X−1 is an m-involution satisfying
AK = −KA. Consequently, focusing our attention to the Jordan canonical form of
A in the following examples is by no means restrictive.

C.1. Diagonalizable Matrices with Two Distinct Nonzero Eigenvalues.
We begin with an easy exercise, treating the general case of a diagonalizable matrix
Ã ∈ Cn×n in Jordan canonical form, where Ã has exactly two distinct eigenvalues,

neither of which are zero. We will assume that S̃m

(
Ã
)
is non-empty.

First, we note that from Theorem 5.3 that if S̃m

(
Ã
)
is non-empty, then Ã must

have each of its nonzero eigenvalues appear in positive-negative pairs. For convenience,
we write the the Jordan canonical form of Ã with the following arrangement of its
eigenvalues: 

λ
. . .

λ
−λ

. . .

−λ


In this example, Lemma 5.1’s elements bi,j , which correspond to the elements

of the prospective m-involution K̃, must be zero in the upper left and lower right
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n/2 × n/2 matrix blocks since λi + λj = 2λi = 2λj ̸= 0 for these indices. Part 2 of

Lemma 5.1 does not impose any further restrictions on the form of K̃, and so we have
the block representation:

K̃ =

(
0 K12

K21 0

)
Ã and K̃ clearly satisfy the relation ÃK̃ = −K̃Ã. The condition that K̃ be an m-
involution is not specifically addressed by Lemma 5.1 (the lemma only establishes
anti-commuting constraints), but is clearly satisfied by imposing that (K12K21)

r =
In/2×n/2, where In/2×n/2 is the n/2 × n/2 identity matrix and m = 2r (as noted
earlier, we only need to consider the cases where m is even). In the special case where
λ = 1 and m = 2, we note that this example reproduces an observation made by
Kestelman in section 3.i of [5].

C.2. Defective Matrices with Two Jordan Blocks and Nonzero Eigen-
values. We next look at the case of a defective matrix Ã ∈ Cn×n in Jordan canonical
form with two Jordan blocks corresponding to nonzero eigenvalues. Since S̃m

(
Ã
)

will assumed to be non-empty, we note again that Theorem 5.3 states that Ã’s two
eigenvalues will appear as positive negative pairs λ and −λ and that the Jordan blocks
will have equal size. That is, Ã can be written in the form

λ 1
. . .

. . .

. . . 1
λ 0

−λ 1
. . .

. . .

. . . 1
−λ


Let K̃ have a compatible block-partitioning with Ã’s Jordan blocks, which we

label as

K̃ =

(
K̃11 K̃12

K̃21 K̃22

)
.

Part 1 of Lemma 5.1 shows that K̃11 and K̃22 must be zero matrix blocks. Part 2 of
Lemma 5.1 shows that the block K̃12 has the form

k1 k2 k3 · · · · · · · · · kn−1 kn
−k1 −k2 −k3 −kn−1

k1 k2 k3
...

−k1 −k2 −k3
...

. . .
. . .

. . .
...


Similarly for K̃21.

https://www.researchgate.net/publication/269022795_Anticommuting_linear_transformations?el=1_x_8&enrichId=rgreq-78b6135069ddb0a618f50fc67510eefc-XXX&enrichSource=Y292ZXJQYWdlOzIyMTY3NTE2MDtBUzoyNTczOTY2NjQ2OTY4MzJAMTQzODM3OTU1NTAyMA==
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The m-involution constraint then forces(
K̃12K̃21

)r

=
(
K̃21K̃22

)r

= In/2×n/2

where m = 2r and In/2×n/2 is the n/2× n/2 identity matrix.

In the special case where Ã ∈ C4×4, K̃’s blocks can be written as

K̃12 =

(
a b
0 −a

)
.

and the block K̃21 can be written as

K̃21 =

(
c d
0 −c

)
.

The m-involution constraint can then be expressed as (ac)r = 1 and ad− bc = 0.

C.3. One More Example. We finish this appendix with a slightly more compli-
cated but concrete example, with less discussion now that the application of Lemma 5.1
is familiar.

Given λ ̸= 0, let Ã ∈ C12×12 have the Jordan canonical form

Ã =


J1

J2
J3

J4
J5


where

J1 =

 λ 1 0
0 λ 1
0 0 λ

 ,

J2 =

 −λ 1 0
0 −λ 1
0 0 −λ

 ,

J3 =

(
λ 1
0 λ

)
,

J4 =

(
−λ 1
0 −λ

)
,

and

J5 =

(
0 1
0 0

)
.

This form for Ã is compatible with S̃m

(
Ã
)
being non-empty.
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Then K̃ will have the form

K̃ =


K12 K14

K21 K23

K32 K34

K41 K43

K55


where

K12 =

 a12 b12 c12
0 −a12 −b12
0 0 a12

 ,

K21 =

 a21 b21 c21
0 −a21 −b21
0 0 a21

 ,

K14 =

 a14 b14
0 −a14
0 0

 ,

K23 =

 a23 b23
0 −a23
0 0


K32 =

(
0 a32 b32
0 0 −a32

)
,

K41 =

(
0 a41 b41
0 0 −a41

)
,

K34 =

(
a34 b34
0 −a34

)
,

K43 =

(
a43 b43
0 −a43

)
,

and

K55 =

(
a55 b55
0 −a55

)
.

Constraints on the values of aij , bij , and cij are imposed by the m-involution con-

straint on K̃. These constraints can be determined taking the m-th power of K̃ and
setting the result equal to the identity matrix.

Appendix D. A MATLAB script For Generating m-Involutions (Un-
published Addendum). This appendix contains a basic MATLAB script for gen-
erating a particular subset of the class Sm (A). When the matrix A is non-defective,
it does this by computing the set Sm (A,X) for some eigenvector matrix X of A, less
those matrices that are simply m-th root of unity multiples of another element of
Sm (A,X).
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f unc t i on [ kL i s t ] = kMatr ices (A, m)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% K−matrix Generator
% Vers ion 1 .0
% Copyright ( c ) 2011 Mark Yasuda
%
% Revis ion 1 . 1 : Introduced an add i t i ona l dimension to the kMatr ices
% output to avoid contcatenat ion o f the l i s t o f
% commuting m−i n v o l u t i o n s (07/31/2015) .
%
% Permiss ion i s hereby granted , f r e e o f charge , to any person
% obta in ing a copy o f t h i s so f tware to use , copy , modify , merge ,
% publ i sh , and d i s t r i b u t e i t sub j e c t to the f o l l ow ing reques t :
%
% That r e f e r e n c e be made to the f o l l ow ing work :
%
% [ 1 ] M. Yasuda , Some p r op e r t i e s o f commuting and anti−commuting
% m−i nvo lu t i on s , Acta Mathematica Sc i en t i a , Volume 32 , No . 2
% (2012) , pp 631−644.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Sample usage :
% >> kL i s t = kMatr ices (A, m)
%
% Deta i l s : This func t i on con s t ruc t s commuting K−matrix m−i n v o l u t i o n s −−
% that i s , g iven a square matrix A o f dimension n , a l i s t o f
% m−i nvo lu to ry matr i ce s ( i . e . , Kˆm = I ) s a t i s f y i n g AK = KA i s
% returned .
%
% When the matrix A i s non−de f e c t i v e , i t does t h i s by computing
% the s e t S m(A, X) f o r some e i g enve c to r matrix X o f A, l e s s
% those matr i ce s K that are simply m−th roo t s o f unity mu l t i p l e s
% of another element o f S m(A, X) . See De f i n i t i o n 3 .1 o f the
% paper [ 1 ] f o r the d e f i n i t i o n o f S m(A, X) .
%
% Inputs : Square matrix A ( complex ) and an i n t e g e r m > 0
%
% Outputs : Given va l i d inputs , a l i s t o f m−i n v o l u t i o n s K that commute
% with A i s returned .
%
% Let A be a square matrix o f dimension n . I f A i s
% non−de f e c t i v e , then a t o t a l o f mˆ(n−1) matr i ce s K s a t i s f y i n g
% AK = KA are returned in a 3−dimens iona l array . Otherwise ,
% only the i d e n t i t y i s returned .
%
% Example : A = [1 2 3 ; 4 5 6 ; 7 8 9 ] ;
% kLi s t = kMatr ices (A, 2)
% k1 = kLi s t ( : , : , 1)
% k2 = kLi s t ( : , : , 2)
% k3 = kLi s t ( : , : , 3)
% k4 = kLi s t ( : , : , 4)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Comments :
%
% This m− f i l e s c r i p t i s a quick hack . There are probably much be t t e r
% ways to wr i t e the code . Fee l f r e e to contact me with suggested
% improvements at :
%
% mark . yasuda@gmail . com
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n = s i z e (A, 1 ) ;
i f ( s i z e (A(1 ) ) ˜= s i z e (A( 2 ) ) )

d i sp ( ’ Input matrix i s not square −− r e tu rn ing the zero matrix ’ ) ;
kL i s t = ze ro s (n ) ;
r e turn ;

end
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i f (m < 1)
d i sp ( ’ Second parameter should be an i n t e g e r g r e a t e r than zero : ’ ) ;
d i sp ( ’ Returning the zero matrix ’ ) ;
kL i s t = ze ro s (n ) ;
r e turn ;

end

i f (m == 1)
d i sp ( ’m = 1 : Returning the i d e n t i t y matrix ’ ) ;
kL i s t = eye (n ) ;
r e turn ;

end

%%%%% Eigendecomposit ion %%%%%
[X, D] = e i g (A) ;

D = eye (n ) ;
s izeX = s i z e (X) ;
i f ( s i z e (X(1 ) ) ˜= s i z e (X( 2 ) ) )

d i sp ( ’ Input matrix i s d e f e c t i v e −− i n f i n i t e l y many s o l u t i o n s : ’ ) ;
d i sp ( ’ Returning only the id en t i t y ’ ) ;
kL i s t = eye (n ) ;
r e turn ;

end

i f (m == 2)
% I f the re are d i s t i n c t e igenva lues , the re w i l l be 2ˆn d i s t i n c t
% K matr i ce s . We return ha l f o f them (no need to return the
% add i t i v e i n v e r s e s o f the ones provided ) .
kL i s t = ze ro s (n , n , 2ˆ(n−1)) ;

% Fix the l a s t d iagona l element o f D at 1 to avoid r e tu rn ing
% add i t i v e i n v e r s e s o f other K.
% For m == 2 , we e xp l o i t the binary r ep r e s en t a t i on o f the index
% to i t e r a t e through the 2ˆ(n−1) e lements .
f o r index = 1 :2ˆ ( n−1)

D = eye (n ) ;
f o r j = 1 : n−1

% f o r the n−1 d i g i t s we are cons ide r ing , a s s i gn
% D’ s j th d iagona l element a −1 i f b i t j i s 1
i f ( b i t g e t ( u int8 ( index ) , j ) == 1)

D( j , j ) = −1;
end

end
% D
kLi s t ( : , : , index ) = X∗D∗ inv (X) ;

end
e l s e

% I f the re are d i s t i n c t e igenva lues , the re w i l l be mˆn
% d i s t i n c t K matr i ce s . We return a s e t that avo ids
% t r i v i a l mu l t i p l e s o f m−th roo t s o f unity o f other
% K−matr i ce s .
kL i s t = ze ro s (n , n , mˆ(n−1)) ;

rootOfUnity = exp (2∗ pi ∗ i /m) ;

% Fix the l a s t d iagona l element o f D at 1 to avoid
% re turn ing add i t i v e i n v e r s e s o f other K
f o r i t e r a t i onVa lu e = 0 :mˆ(n−1) − 1

D = eye (n ) ;

% Note that one can u t i l i z e a base−m expansion to
% i t e r a t e through the mˆn so lu t i on s , mˆ(n−1) o f
% which are returned ( avo id ing s c a l a r mu l t i p l e s o f
% other s o l u t i o n s ) . The base−m expansion uses the
% MATLAB/Octave func t i on s dec2base , substr , and
% str2num to ex t r a c t the base−m d i g i t s .
baseStr ingExpans ion = dec2base ( i t e ra t i onVa lue , m, n ) ;
f o r j = 2 : n

d ig i tVa lue = str2num ( subs t r ( baseStr ingExpansion , j , 1 ) ) ;
D( j , j ) = power ( rootOfUnity , d i g i tVa lue ) ;

end
indexValue = i t e r a t i onVa lu e + 1 ;
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kL i s t ( : , : , indexValue ) = X∗D∗ inv (X) ;
end

end
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