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Abstract. We define a m-involution to be a matrix K € C"*™ for which K™ = . In this paper,
we investigate the class Sy (A) of m-involutions that commute with a diagonalizable matrix A €
C™*™. A number of basic properties of Sy, (A) and its related subclass Sy, (A, X) are given, where X
is an eigenvector matrix of A. Among them, Sy, (A) is shown to have a torsion group structure under
matrix multiplication if A has distinct eigenvalues and have non-denumerable cardinality otherwise.
The constructive definition of Sy, (A, X) allows one to generate all m-involutions commuting with
a matrix with distinct eigenvalues. Some related results are also given for the class Sy, (A) of m-
involutions that anti-commute with a matrix A € C**".
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1. Introduction. Let J represent the exchange matriz of order n, defined by
Jij = Oim—j+1 for 1 < 4,5 < n where ¢;; is the Kronecker delta. If A € C"*"
commutes with J, then A is called centrosymmetric. Centrosymmetric matrices, which
appear in numerous applications, include the class of symmetric Toeplitz matrices and
the class of bisymmetric matrices. A number of papers (among them, [1], [2], [6], [7],
and [10]) have investigated the generalization where J is replaced by an involutory
matrix K.

More recently, W. F. Trench (in [8] and [9]) investigated the set of complex matri-
ces A that satisfy AK = (/K A, where ( is an m-th root of unity, 0 < j < m —1, and
K’s minimal polynomial is 2™ —1 for an integer m > 1. Trench referred to such K as
m-~involutions, but in this paper we use the term m-involution to refer to any matrix
K for which K™ = I. We refer to the set of matrices whose minimal polynomial is
" — 1 as the non-trivial m-involutions. This terminology is consistent with usage in
the m = 2 case, where the matrices +1 are regarded as trivial involutions.

In this paper, we define a K,,-symmetric matrix to be a complex matrix A that
commutes with an m-involutory matrix K. In papers that have studied Ks-symmetric
and K,,-symmetric matrices, the matrix K is usually considered fixed and the prop-
erties of the matrix A are studied. One difficulty in applying results of this nature
is that except in special cases, it’s typically not easy to discern the K,,-symmetry of
a matrix A by mere inspection. In the current paper, we take a somewhat different
approach by fixing A and studying the class S,, (4) of m-involutory matrices K that
commute with it. To begin the investigation, we introduce a constructive subset of
Sm (A) that enables the easy generation of m-involutions that commute with A. Now
the task of identifying the K,,-symmetry of a matrix A can, in some cases, be re-
duced to a relatively straightforward computation. We also show that S,, (A) has a
torsion group structure under matrix multiplication if A has distinct eigenvalues and
is infinite otherwise.

If A e C"*" anti-commutes with the exchange matrix J, then A is called skew-
centrosymmetric or centroskew per [4]. As in the centrosymmetric case, the papers [6],
[7], and [10] investigated the case where .J is replaced by a general involution, while
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[8] looked at a broader generalization (mentioned above) that includes the commuting
and anti-commuting cases. This motivated a study of the anti-commuting case, and
so we close this paper by establishing some related results for the class S, (A) of
m-~involutory matrices K which that anti-commute with A.

2. Preliminaries. In [6], [7], and [10], several Ky-symmetric matrix analogs to
well-known results for centrosymmetric matrices were established. For example, dur-
ing the 1960s and 1970s, Collar [4], Andrew [2], and Cantoni and Butler [3] each noted
(in slightly different contexts) that the eigenbasis {x;}]_, of a n x n centrosymmetric
matrix A is composed of [ W symmetric eigenvectors (i.e., x; = Jx;) and L J skew-
symmetric eigenvectors (i.e., x; = —Jx;). In [6], this observation was extended to the
situation where J was replaced by a non-trivial involutory matrix K and both A and K
are real symmetric ([5, Lemma 3.11]). This was a direct generalization of the context
considered in [3]. The paper [10] extended this to the Hermitian case for A and K ([8,
Propositions 3.5 and 4.1]). In [7], W. F. Trench strengthened this result ([6, Theorem
7]) by showing that Ks-symmetric matrices A have a basis consisting of K -symmetric
(i.e., z; = Kx;) and K-skew-symmetric eigenvectors (i.e., x; = —Kx;) without the
Hermitian condition assumed in [10]. Trench also established the converse, thereby
generalizing a result of Andrew for centrosymmetric matrices ([2, Theorem 2]). We
will refer to these two results of Trench collectively as the FEigenbasis Theorem for
K5-symmetric matrices.

More recently, in [8], Trench extended this result to the class of complex matrices
A which commute with a non-trivial m-involutory matrix K. Let ¢ = e2™/™. His
result ([7, Theorem 13]) states that if X' € C™*"™ is non-trivial m-involutory, A € C"*"
is K,,-symmetric, and )\ is an eigenvalue of A, then the A-eigenspace of A has a basis

in the union Q4 = U {#z|Kz = (z}. Conversely, he showed that if a matrix A

has n linearly mdependent vectors in @4, then A is K,,-symmetric. Accordingly,
we will collectively refer to these two more general statements statements as the
FEigenbasis Theorem for K,,-symmetric matrices. Following Trench, we will refer to
vectors satisfying Kz = "z as (K, r)-symmetric vectors.

In this paper, we use the notation S, (A) to denote the set of complex m-
involutory matrices K that commute with a complex matrix A. We use the notation
T,(x) (A) to denote the set of complex m-involutory matrices with minimal polyno-
mial p(z) that commute with A. Note that

Sm(A) = |J Thw(4)
p(@)|z" 1
p(x)€Cz]

p(z)monic

Let a,pp € {0,1,...,k—1} and let R and S be non-trivial m-involutions. In
Trench’s papers [8] and [9], the class of matrices A satisfying the equation

(1) RAS™® = (' A

are studied. When a = 1, p = 0, and R = S, the matrices R and S belong to
the set T, (A) where p(x) = 2™ — 1. Trench’s focus is on the class of matrices A
satisfying (1), and while he does provide some general results concerning non-trivial
m-~involutions, he does not attempt to investigate the collective properties of either
the set T, (A) or its superset S, (A).
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3. Construction and Properties of S,, (A, X). For what follows, we assume
that A is diagonalizable. Let A = XAX ! where X is an eigenvector matrix of A
and A is the diagonal eigenvalue matrix of A. For convenience, we will assume that
each of the columns of X are normalized and that there is a fixed ordering for the
eigenvalues in A.

If we wish to construct a non-trivial subset of S, (A4), consideration of simultane-
ous diagonalization and familiarity with the Eigenbasis Theorem for K,,-symmetric
matrices leads naturally to an investigation of matrices of the form K = XDX 1,
where D is a diagonal matrix whose diagonal elements belong to the set of m-th roots
of unity.

DEFINITION 3.1. For a fized eigenvector matriz X of A € C"*", we define

S (A4, X) = {XDX|D diagonal with Dy € {¢'}]"'}

where ¢ = e2™/™,

The following theorem lists some of the more elementary properties concerning
the set Sy, (A, X) and its relationship to Sy, (A).

THEOREM 3.2. For a fized eigenvector matriz X of A € C™"*™, we have:

(2) Sm (A, X) C Sy (A),

(3) |Sm (A, X) | =m",

and

(4) Sz (A) = U S2 (A, X)
X

where the union ranges over all possible eigenvector matrices X of A.

Proof. (2) and (3) follow easily from the definition of S, (4, X).

To show (4), we first note that the trivial involutions I in S (A) are obtained
using D = =+ for any eigenvector matrix X of A. For any non-trivial involution
K, the Eigenbasis Theorem for Ks-symmetric matrices states that there exists an
eigenbasis for A consisting of K-symmetric and K-skew-symmetric eigenvectors. Let
X = ( 1 Ty ... I ) have columns comprised of such a basis. If we choose
D = (dij),<; j<, to be the diagonal matrix having —1 at element d;; for each K-
skew-symmetric eigenvector x; and 1 for the remaining diagonal elements, then K =
XDX~1. That is, we recover K with this choice of D.

So, for any non-trivial involutory K € S5 (A) that there exists an eigenvector
matrix X of A and choice of D such that K = XDX~!. This shows that Sy (A) C
U S2 (A, X), and (2) shows the reverse inclusion. O
X

In the proof of the third assertion of Theorem 3.2, we showed how one could
choose the elements of a diagonal matrix D to recover a matrix K € Sy (A), given an
eigenvector matrix for A consisting of K-symmetric and K-skew-symmetric columns.
We now state the analagous “recovery” theorem for a nontrivial m-involution K €
Sm (A). The proof follows along the same lines as that for the Sy (4) case so we omit
it.

THEOREM 3.3. Let A € C"*" be K,,-symmetric with K a non-trivial m-
involution. Suppose X = ( T1 To ... Tn ) s an eigenvector matriz for A, where
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each column x; is (K,r;)-symmetric for some 0 < r; < m — 1. Since A is K-
symmetric, such an X 1is guaranteed to exist by the Figenbasis Theorem for K,,-
symmetric matrices. Then there exists a diagonal matrix D = (divj)lgi,jgn such that
K = XDX ™! and whose diagonal elements dcj,j) satisfy dj; = (""", As usual,
C — 627ri/m'

The following corollary is immediate from Theorem 3.3.

COROLLARY 3.4. Let A € C"*" be K,,-symmetric where K is a non-trivial m-
involution. If X, and X, are eigenvector matrices of A, each of whose columns is
(K, rj)-symmetric for some 0 <r; <m —1, then K € Sy, (4, X,) NSy, (4, Xp)

Ezxample. If A is a centrosymmetric matrix and X is any eigenvector matrix of A
comprised of symmetric and skew-symmetric vectors, then the exchange matrix J is
guaranteed to be found in S (A4, X).

Equations (2) and (3) of Theorem 3.2 show that after one determines an eigen-
vector matrix X and its inverse X! for a diagonalizable matrix A, one can then
identify m™ different K,,-symmetries of A by simply computing the matrix products
XDX ™! where one varies the diagonal elements of the matrix D over the different
combinations of m-th roots of unity. This computation can be further made more
efficient by making the following observations.

1. Let K = XDX " and K = XDX ' be members of S,, (4, X), where the
diagonal matrices D = diagonal(d;;) and D = diagonal(d;;) differ only by a
factor of  in their kth diagonal element. If dy = (dgr, and we denote the
i,j element of X! by y;;, then element l;ij of K is related to element ki; of
K by

kij = kij + (¢ — 1)dgrziny;-
So, as one iterates through the products X DX ! by varying D, if an update
to D only involves a (-scaling of a single diagonal element, then deriving an
updated K from K requires just 3n? multiplications and n? + 1 additions.

2. If K €S, (A4,Xj), then ("K € 5, (4, X;) for 0 <r <m — 1. To avoid the
unnecessary computation of these scalar multiples of K, we can simply fix a
diagonal element of D at 1 (say di1) and vary the other diagonal elements
over the m-th roots of unity. To see this, let K = XDX ! be an element of
S (A4, X;) for some D = diagonal( ¢l (™ ) Then

KX = (@ (P .. ().

This shows that there exists a matrix K € S,, (4, X;) such that K = ("K
where K = XDX ! and D has a value of 1 for its dy,1 element. Employing
this observation reduces the number of matrix product computations needed
to enumerate the elements of S, (A, X;) down by a factor of m.
At this point, after generating the elements of S,, (A4, X), one can then select dis-
tinguished elements K from the set and apply known theoretical results for K,,-
symmetric matrices to a particular study involving A.

Since S, (A4, X) is finite, it is not surprising that one can make some fairly strong
statements about its elements. The next theorem lists two such statements and shows
that when a matrix A € C™*" has distinct eigenvalues that these statements apply
to S, (A4) itself.

THEOREM 3.5. If A € C"*" is diagonalizable with an eigenvector matriz X, then
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1. If A has distinct eigenvalues (hence, is diagonalizable), then
(5) Sm (A) = Sm (4, X)

2. The number of non-trivial m-involutory matrices in Sy, (A, X) is

m .
©) 7 ()
=0 J
Proof. The proof of the first assertion (5) is elementary and has been omitted.
For the second assertion (6) of Theorem 3.5, we wish to compute the cardinality
of T, (x) (A) when the minimal polynomial p(z) equals 2™ — 1 and has distinct roots.
To determine this, one simply needs to count the number of diagonal matrices D
whose set of diagonal elements contain at least one of each of the m-th roots of unity.
This can be accomplished by a standard inclusion-exclusion enumeration. O

We now characterize the algebraic structure of S,, (A, X), which as we’ve shown
in Theorem 3.5, equals S,, (A) when A has distinct eigenvalues.

THEOREM 3.6. Let A € C"*™ be diagonalizable with an eigenvector matriz X .
Then the set Sp, (A, X) under matriz multiplication forms a torsion group G, (A, X)

that is isomorphic to E% /.
i=1

Proof. That Sy, (A_, X) is an abelian group follows easily from its definition. The
mapping

Ch 0
X X' ()@, .. 8 (n)
0 Cin

is clearly a group homomorphism from G,, (4, X) to é Zp, with a trivial kernel,
i=1
thereby establishing the isomorphism. [

COROLLARY 3.7. If A is centrosymmetric with distinct eigenvalues, then the
tnvolutory matrices that commute with it are centrosymmetric.

Proof. This follows from equation (5) and Theorem 3.6 since the exchange matrix
J is a member of the abelian group G5 (A, X). O

It’s easy to produce examples that show that Corollary 3.7 fails if the restriction
that A has distinct eigenvalues is violated. However, it’s also not hard to show that
Corollary 3.7 holds without the restriction to involutory matrices. We start by defining
the simultaneously diagonalizable family R (A, X).

DEFINITION 3.8. For a fized eigenvector matriz X of A € C"*", let

R(A,X)={XDX ' D e C"™" diagonal} .

It’s clear that R (A, X) is an superset of Sy, (A, X) for every m, and that R (A, X)
is a commutative monoid under matrix multiplication.

LEMMA 3.9. Suppose A € C"*" has distinct eigenvalues. If B € C"*™ commutes
with A, then B € R(A, X).

Proof. Since A = X1 AX has distinct entries and B commutes with A, it follows
that X "!BX commutes with A. The only matrices which commute with diagonal

matrices with distinct entries are diagonal matrices. Therefore X "' BX is diagonal,
and so Be€ R(A,X). 0O
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THEOREM 3.10. If A is centrosymmetric with distinct eigenvalues, then the ma-
trices that commute with it are centrosymmetric.

Proof. Suppose matrices B; and B; commute with A. From Lemma 3.9, we have
that B; commutes with B;. Letting B; = J shows that B; is centrosymmetric. O

COROLLARY 3.11. If A is real, bisymmetric and has distinct eigenvalues, then
the matrices that commute with it are bisymmetric.

Proof. If A has real entries and A = A7, then X can be taken to be a matrix
with real entries and X~ ! = X7. If B commutes with A, then X7 BX must be a
diagonal matrix from Lemma 3.9. Hence

XTBTX = (xTBX)T = D" =D =XTBX.

Multiplying on the left by X and the right by X7 gives BT = B. This and Theo-
rem 3.10 yield the result. O

4. S, (A,X) and the Non-Distinct Eigenvalue Case. When a diagonaliz-
able matrix A has distinct eigenvalues, equation (5) implies that Theorem 3.6 is a
result about Sy, (A) itself. If, on the other hand, A has at least one eigenvalue with
multiplicity greater than one, several of the nice algebraic properties of Theorem 3.6
no longer hold. In particular, commutativity and closure do not hold in general for
Sm (A), and the cardinality of Sy, (A) will be infinite. The underlying reasons for the
latter are that |J S, (4,X) C Ss(A) from (2), that there are now infinitely many

X

choices for the normalized columns of A’s eigenvector matrix X, and that S, (4, X;)
and S, (A4, X;) can differ when X; and X; differ. We will be more precise about this
in what follows.

First, however, we prove a statement about the commonality between the sets
Sm (4, X;) and Sy, (A, X;). Since the identity matrix belongs in every set S, (4, X),
they are clearly not disjoint. In fact, one can always find at least m elements in
common between any pair of these sets, and when A does not have distinct eigenvalues
a larger lower bound can be established. We begin by establishing a preliminary
lemma.

LEMMA 4.1. Let X; € C™*™ and X; € C™*™ be nonsingular matrices where the
first 0 < r < n columns of X; are a linear combination of the first r columns of X;
arising from right multiplication by a nonsingular linear transformation which leaves
the remaining columns of X; fized. Let D € C™"*™ be a diagonal matriz of the form

al, 0
where I, is the r xr identity matriz and « s a fired complex number. Then XiDXZ-_1 =
X;DX; "
Proof. By hypothesis, X; = X;M where

@) = (0.

with M7, € C"™*" nonsingular and where I,,_, is the (n —r) X (n —r) identity matrix.
Let

X111 Xio 1 < Yin Yo )
8 X, = ax-!—
®) ( Xo1 Xo2 ) ane A Yor Yoo
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under the same partitioning as D and M. If we write D1, in place of al,. to allow us to
express the forthcoming equalities more generally, then we see that K = X DXj_1 =

XZ-MDM’le1 is comprised of the blocks

9) K11 = X11 M1 D11 M "Y1 + X12D20Yo
(10) K1 = X11M11 D11 M1 Y1z + X12D20Ya9
(11) Koy = Xo1 My D1y M1 Y11 4 X2 Doo Yoy
(12) Ky = Xo1 My1 D1y M"Yz + X2 D2 Yoo

This is easily shown to equal XiDXi_l. O

THEOREM 4.2. Let A € C™*" be diagonalizable and let its eigenvalues of mul-
tiplicity greater than one comprise a set of values V- = {vi},_, where 0 < s < n
(V' can be empty). Let puy > 1 be the multiplicity of A’s eigenvalue with value vy
for 1 <k <s. Then if X; and X; are each eigenvector matrices of A, we have that

[Sim (A, Xi) (S (A, Xj)| 2 m" =74 where v = 37 pi.

Proof. Recall that the eigenvector matrices ZXll and X; of A are assumed to have
normalized columns. So, aside from scalar multiples of magnitude one, the columns
of X; and X; can only differ in the columns corresponding to the eigenvalues of
multiplicity greater than one.

For convenience, we will assume that the diagonal elements of the eigenvalue ma-
trix A = diag (M), <)<, are arranged so that the distinct eigenvalues \; are positioned
in the last n — r diagonal elements and the eigenvalues of multiplicity greater than
one are set up consecutively in the first r diagonal elements as

vy for 1 <j <y
vo for 14+ < j < g+ po

s—1
vgfor 14+ > p; <j<r
i=1

This establishes an ordering for the columns of the matrices X; and X;.
Consider X;DX; ' € Sy, (A, X;) and X;DX:' € Sp, (A, X;) where D has the
form

(o0
(13) D_( o D22>,

¢ = e?™/™ and k is an integer in the range 0 < k < m— 1. Application of Lemma 4.1
shows that XZ-DX[1 = XjDXfl. Since there are m choices for ¢¥I;; and m"~"
choices for Dy, we have m™ ="+ matrices D of the form (13) for which XZ«DXZ.*1 =
X;DX; 1.

We now consider the 2 x 2 block repartitioning of D where the new upper-left
block is the upper-left (r — us) X (1 — ps) portion of the previous r x r upper-left block
¢ k111. This new partitioning effectively means that the last ps elements of D1y in the
previous partitioning have been transferred to the Doy block of the new partitioning.
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Another application of Lemma 4.1 shows that if D has the form (13) under the new
partitioning, then here too Xl-DXi_1 = XjDXj_l. The number of choices for D
under this partitioning that are distinct from that found in the previous partitioning
is (m — 1)m™~"*1. So, the number of choices for D under the two partitionings is
mn—r—i—l + (m _ 1)mn—r+1 — mn—r+2.

We can now proceed inductively, reducing the upper-left block’s size by 1, at each
stage, for j = s — 1 through j =1. 0O

COROLLARY 4.3. Let X; and X; be any two eigenvector matrices of A.

1. In the case where all eigenvalues of A are the same (i.e., multiplicity n),
S (A, X)) (1 S (A, )] = m,
2. In the case where all eigenvalues of A are distinct, S,, (4, X;) = Sm (4, X}).

Proof. For the first assertion, apply Theorem 4.2 with » = n and s = 1. The
m elements found between any pair of S, (4, X;) and S, (A, X;) are precisely the
matrices (71 for 0 < j <m — 1.

For the second assertion, apply Theorem 4.2 with » = 0 and s = 0 together with
equation (3). O

A cursory study of the situation where A is a multiple of the identity matrix
I,, for n > 1 is sufficient to generate examples where commutativity and closure fail
for elements of S,, (A) under matrix multiplication. It’s also not hard to show that
there are infinitely many m-involutions of every dimension greater than one, thereby
showing that |S,, (al,)| is infinite for every n > 1. The latter statement, in fact,
holds for S,, (A) where A is any diagonalizable matrix in C"*™ with an eigenvalue of
multiplicity greater than one.

THEOREM 4.4. Suppose A € C™"*" is diagonalizable and has at least one eigen-
value of multiplicity greater than one. Then the cardinality of the set Sy, (A) is non-
denumerable.

Proof. As in the proof of Theorem 4.2, we assume that the elements of the
diagonal eigenvalue matrix A = (A;), <ij<n AT€ arranged so that any eigenvalues of
multiplicity greater than one are placed consecutively in the upper-left. Let us reuse
the partitions (7) and (8) where we take the size of the upper-left block to be 2 x 2.
We will also use the diagonal matrix partition

([ Dy 0
D‘( 0 D22>

D11=<(1)2)

with ¢ = e2™/™ and consider Doy fixed.

Let
m m
My = < 11 12 >
mMa1  Ma2
and define M = M11D11M1_11.

Our expression for K € S, (A) is comprised of the block equations (9), (10), (11),
and (12). Since the only degrees of freedom in these equations are the elements m11,
mi2, Moy, and Mmoo, we may confine our attention to the products

where we take

(14) X1 MYy
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(15) X11MY1s
(16) Xo1 M Y1y
(17) X1 MY

Computing M = M11D11M1_11, we find

~ m11Ma2 — (M1aMa1 (¢ — 1)miimaa
18 M =
(18) K ( (1 = ¢)ma1may —Mmi2may + (Mi1Ma2

where p = (mq1mas — mlgmgl)_l. For convenience, assume the partitioning

o (7 ),
ma1  Ma2

In (18), we note that the magnitude of the complex number 71 ranges contin-
uously over [0,00) by (for example) setting moy = 0, fixing mi2 and meo; at nonzero
values, and letting mi; vary. Similarly, we note that the magnitude of Mgy ranges
continuously over [0, 00) by setting mq; = 0, fixing m12 and mo; at nonzero values,
and letting mso vary.

Let z = myimsgs and set mismeo; = 1. Under this choice, mi; becomes the
complex function z:g and Mmoo becomes the complex function sz:ll. From this, we
see that here too, the magnitude of the elements 711 and mss each range continuously
over [0, 00).

From (8), we observe that the blocks X717 and X351 cannot be simultaneously zero.
Similarly, Y1; and Y72 cannot be simultaneously zero. This leads us to consider four
separate cases. Namely,

1. X11 7é 0 and Y11 7é 0
2. X11 75 0 and Y12 75 0
3. X21 #OandYn 750
4. X217é0andY127é0
At least one of these cases must be true.

For Case 1, we focus on equation (14). Since X711 # 0, there exists at least one
row of X711 that is nonzero. Pick one such row, and let it have values x = ( a B )
Since Y11 # 0, there exists at least one column of Y7; that is nonzero. Pick one such

column and let it have values y* = ( v 6 )T. Then,
(19) wMy = oy + yBrigr + Sy + 6Bmas

Since « and 8 are not simultaneously zero and «y and § are not simultaneously zero,
at least one of the four summands in (19) must not be identically nonzero. If only
one summand is nonzero, since we know the magnitude of mi1, mo1, M1z, and Mmoo
each range continuously over [0,00) for varying choices of my1, mia, may, and maa,
we have that zM y assumes a non-denumerable set of values. So, suppose at least two
of the four summands in (19) are not identically zero. We wish to show that zMy
cannot be limited to a discrete set of values. Equation (18) shows that my1, Mo,
m12, and Moo are continuous complex valued functions, and only m1; and mey can
be linearly related (e.g., when ¢ = —1). But if the coefficients of 711 and 7as are
both nonzero in the linear combination (19), then the coefficients of Mo and mqs
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will also be nonzero. Therefore, if at least two of the four summands in (18) are
nonzero, there will be a nonzero term involving either the product pumiimiz (ie.,
Mm12) or the product umeimas (i-e., mo1). Since only one of the four summands in
(19) involves the product umi1mi2 and only one of the four summands (19) involves
the product umsymes, the product oM y cannot be limited to a discrete set of values.
We conclude that the product in (14) assumes a non-denumerable number of values
under the assumptions of Case 1.

The treatment of Cases 2, 3, and 4 are treated in the same manner, with Case
2 dealing with equation (15), Case 3 dealing with equation (16), and Case 4 dealing
with equation (17). Since the form of D used in the demonstration occurs in every
set Sy, (A, X) for which A has dimension two or more, and since at least one of the
four cases must be true this completes the proof. O

5. The Anti-Commuting Case. In addition to studying Ks-symmetry, the
papers [6], [7], and [10], also investigated matrices A that satisfied the anti-commuting
relationship AKX = —K A where K is an involution (the Ks-skew-centrosymmetric
matrices). It would therefore be desirable to obtain results similar to those found for
Sm (A) that hold for the set of complex m-involutions that anti-commute with a fixed
complex matrix A € C**",

Let us denote this set as S, (4) and suppose K is an m-involution. Some facts
are immediately apparent. From a trivial determinant argument, we see that if n is
odd and A is nonsingular, then S,, (A) is empty. With just a little more effort, since
A=EK"A=(-1)"AK™ = (=1)™A, if m is odd it then follows that S, (4) is empty
except when A is the zero matrix, in which case S,, (A) is non-denumerable for n > 1.
So, we only need to focus on the case where m is even.

A deeper study of S,, (A) requires a characterization of the structure of both A
and K when AK = —AK. To accomplish this, we turn to the Jordan decomposition
of A A= S"1AS of A, where

A =diag(Ji(M), -, Te(Mr)),

the Jordan blocks J; are n; x n;, and n = > n;. Let K be any matrix of the same size
as A, and block partition it so that its R’ij block is n; x n;. If we let K = SKS1,
then AK = —K A if and only if AK = —K A if and only if jif(ij = —K’ijji for all 4, 5.
The following lemma helps describe the structure of the blocks J; and f(ij whenever
AK = —KA.

LEMMA 5.1. Suppose B € C™*" I, is the m x m identity matriz, and N, is
the m x m matriz with ones directly above the main diagonal and zeros elsewhere. Let
bi; denote the i,j element of the matriz B. Then

1. If Xi+X; #0, then

(20) (Ailm + Npu)B = —B(\ I, + N,)

if and only if B = 0.
2. If i + A =0, then

(21) (Ailm + Nu)B = —B(\ I, + N,)

if and only B is upper triangular, where the components of columns 1 through
n —m are zero if n > m, the components of rows m + 1 through n are zero if
n < m, and each diagonal of the upper triangle has constant magnitude and
alternates in sign along the diagonal (i.e., b; j = —bit1,j41).


https://www.researchgate.net/publication/222670070_Characterization_and_properties_of_matrices_with_generalized_symmetry_or_skew_symmetry?el=1_x_8&enrichId=rgreq-78b6135069ddb0a618f50fc67510eefc-XXX&enrichSource=Y292ZXJQYWdlOzIyMTY3NTE2MDtBUzoyNTczOTY2NjQ2OTY4MzJAMTQzODM3OTU1NTAyMA==
https://www.researchgate.net/publication/233426846_A_Spectral_Characterization_of_Generalized_Real_Symmetric_Centrosymmetric_and_Generalized_Real_Symmetric_Skew-Centrosymmetric_Matrices?el=1_x_8&enrichId=rgreq-78b6135069ddb0a618f50fc67510eefc-XXX&enrichSource=Y292ZXJQYWdlOzIyMTY3NTE2MDtBUzoyNTczOTY2NjQ2OTY4MzJAMTQzODM3OTU1NTAyMA==
https://www.researchgate.net/publication/233426828_Spectral_Characterizations_for_Hermitian_Centrosymmetric_K-Matrices_and_Hermitian_Skew-Centrosymmetric_K-Matrices?el=1_x_8&enrichId=rgreq-78b6135069ddb0a618f50fc67510eefc-XXX&enrichSource=Y292ZXJQYWdlOzIyMTY3NTE2MDtBUzoyNTczOTY2NjQ2OTY4MzJAMTQzODM3OTU1NTAyMA==

COMMUTING AND ANTI-COMMUTING m-INVOLUTIONS 11

Proof. To prove the first assertion, first rewrite equation (20) as
(22) ((A\i + Xj) L, + Nyy)B + BN, = 0.

Multiplying (22) on the right by N7 for 1 < j < n — 1 gives n — 1 equalities of the
form

(23) ((X\i + A\j) L, + N,y ) BN] + BN = 0.

Since N = 0 and (X\; + Aj)I,, + Ny, is nonsingular, if we let j = n — 1 in equation
(23), we have that BN"~! = 0. Substituting this into equation (23) for j = n —2, we
see that BN~2 = 0. Continuing in this manner, we arrive at BN,, = 0 when j = 1
which, when substituted into (22), gives us B = 0.

To prove the second assertion, we first simplify equation (21) as

(24) N,,B = —BN,,.

Comparison of the first column of each side of (24) shows that the matrix B is zero
in the first column below the b;; element. Equating the j-th column of each side of
(24) gives

(25) (b2.,j7 b3,j7 ey bn,ja O)T - _(bl,jflv bQ,jflv ey bnfl,jflvbn,jfl)T'

This shows that the diagonals of B are of equal magnitude and alternate in sign, and
are zero below the main diagonal. Finally, we note that the m-th row of (24) shows
that by,1 = b2 = -+ = by n—1 = 0. Combining this with (25) shows that columns
one through n — m are zero when n > m. O

The next lemma will be useful in the determination of the cardinality of S, (A).

LEMMA 5.2. Suppose B € C™*™ has the form described in Lemma 5.1 andn > 1.
That is, B is upper triangular and each element satisfies b; ; = —biy1j41. Then,
there are uncountably many involutory B.

Proof. Let C = B%. Then

J j—it+1
k+1
%'ZE bikbr,; = E (=) by kb1 j—k—it2
k=1 k=1

Since ¢;, j, = Ci, j, Whenever jo —ip = ji — 41, we see that C' is upper triangular
Toeplitz and so we can restrict our attention to the values of the first row of C. For
convenience, let us write ¢; for ¢; ; and b; for by ;. Then,

J
¢ = Z (=)™ by 1.
k=1
When j is even, ¢; = 0. When j = 2m + 1, we have
(26) Comyr = (1) 02 42 (D) brbam o
k=1

We want C' = I. The constraint ¢; = 1 yields two solutions for b;. If n = 2,
then by is unconstrained and we are done. Assume n > 2. Since the solutions for by
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can be substituted back into (26), the equation ¢ = 0 becomes a complex bivariate
quadratic in by and b3 which has uncountably many solutions for b, and b3. This
process can be continued as m is incremented. Each time m is increased by one, the
solutions of the previous iterations can be subsituted into (26) and two new unknowns
bon, and bo,, 41 appear, resulting in another bivariate quadratic for which there are
uncountably many solutions. O

THEOREM 5.3. Given A € C™*™ and an m-involution K € C"*":

1. Let n = 1. If A is the number zero, then S,, (A) contains the m-th roots of
unity. Otherwise, Sy, (A) is empty.

2. Suppose n > 1 and let m > 1 be an odd integer. If A is the zero matriz, then
Sy (A) is non-denumerable. Otherwise, Sy, (A) is empty.

3. Suppose n > 1 and let m > 1 be an even integer. If the non-zero eigenvalues
of A come in pairs of opposite sign where the corresponding pairs have Jordan
blocks of equal size, then the cardinality of the set Sy, (A) is non-denumerable.
Otherwise S,, (A) is empty.

Proof. The first assertion is trivial, while the second assertion’s proof was given
at the beginning of this section. We proceed with the proof of the third assertion.

From Lemma 5.1, we see that if A anti-commutes with K then its nonzero eigen-
values must come in pairs of opposite sign where the corresponding pairs have Jordan
blocks of equal size. So, to demonstrate the theorem’s third assertion we only need
to show that S,, (A) is non-denumerable when A satisfies this condition. For conve-
nience, we will assume that the pairs of Jordan blocks with eigenvalues of opposite
sign appear consecutively along the diagonal of A. The proof will be broken into
several cases.

1. Case: A is the zero matrix.

2. Case: A has all eigenvalues zero and has at least Jordan block that is m x m
where m > 1.

3. Case: A has at least one pair of Jordan blocks for non-zero eigenvalues of
opposite sign that are both m x m where m > 1.

4. Case: All Jordan blocks of A corresponding to non-zero eigenvalues are 1 x 1.

Case 1 is trivial, so we move on to Case 2. For Case 2, we consider a particular
class of block-diagonal matrices K whose diagonal blocks are the same size as those
of A. Assume without loss of generality that an m x m Jordan block of A, where
m > 1, occupies the 1,1 block position. Consider the set of block matrices whose
1,1 block is an upper triangular involution whose elements satisfy k; ; = —kit1,j+1,
and whose remaining diagonal blocks are diagonal matrices with alternating values of
1 and —1. The elements of this set are clearly involutions, they anti-commute with
A since their form satisfies the conditions of Lemma 5.1, and Lemma 5.2 shows that
there are uncountably many choices for the 1,1 block. Since m is even, this set of
involutions belongs to S, (A) and so we are done with this case.

Case 3. Assume without loss of generality that the 1,1 and 2,2 Jordan block
positions of A are occupied by blocks corresponding to a positive-negative eigenvalue
pair and whose block sizes are m x m where m > 1. We choose the 1,2 and 2, 1 blocks
of K such that K 12 = Kgyl and K 1,2 and K 2,1 are upper triangular involutions whose
elements satisfy k; j = —k;41 j41. For the remaining A Jordan block pairs in the i,
and i + 1,7 + 1 positions, pick the K blocks in the 4,7 + 1 and i + 1,4 positions to be
identical diagonal matrices with alternating 1’s and —1’s on their diagonals. For the
A blocks in the 1,1 positions corresponding to zero eigenvalues, let the 4,7 block of K
also be diagonal with alternating 1’s and —1’s. Assume the remaining blocks of K are
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zero. Then K is an involution, Lemma 5.2 shows that there are uncountably many
choices for K’s 1,1 and 2,2 blocks, and Lemma 5.1 shows that K anti-commutes with
A. As noted in Case 2, these involutions belong to S, (A).

Case 4. Assume without loss of generality that the 1,1 and 2,2 Jordan block
positions of A are occupied by 1 x 1 blocks corresponding to a positive-negative
eigenvalue pair. Pick elements k12 and ko1 of K such that k12ke1 = 1. For the
remaining 1 x 1 Jordan block pairs of A in the 4,7 and i + 1,i + 1 positions, pick the
elements £; ;11 and k;41; to be 1. For the A blocks in the 1,1 positions corresponding
to zero eigenvalues, let the i, i block of K be diagonal with alternating 1’s and —1’s (as
in Case 3) and assume the remaining blocks of K are zero. Then K is an involution,
there are uncountably many choices for kq 2 and k3 ;, and Lemma 5.1 shows that K
anti-commutes with A. As noted in Case 2, these involutions belong to S, (A).

Since these results for A and K in Cases 1-4 translate directly into anti-commuting
results for A and K, we are done. O

Lemma 5.1, together with the m-involution constraint, characterize the matrices
K which in turn characterizes the elements of S,, (4). This characterization can then
be used to develop an algorithm for generating subsets of S,,, (A). For example, after
computing the Jordan decomposition A of A, one could construct examples of K as
follows. For the A Jordan block pairs corresponding to non-zero eigenvalues in the 7,1
and i + 1,7 + 1 block positions, pick the K blocks in the 7,7 + 1 and i + 1,7 positions
to be identical diagonal matrices whose 1,1 diagonal element is an m-th root of unity
and whose subsequent diagonal elements alternate in sign. For the A blocks in the
1,1 positions corresponding to zero eigenvalues, let the 7,7 block of K also be diagonal
whose 1,1 diagonal element is an m-th root of unity and whose subsequent diagonal
elements alternate in sign. Assume the remaining blocks of K are zero.

Of course, there are many other elements of S, (A) that this particular construc-
tion of K does not consider. For example, other blocks of K may be nonzero, in
particular if there multiple Jordan blocks of A corresponding to a particular eigen-
value value. Also, it’s not necessary for the blocks of K to be diagonal. The example
construction described in the previous paragraph could be modified to include such
possibilities. The main drawback to this construction, however, is its reliance on the
Jordan decomposition, which is known to be very sensitive numerically. Construct-
ing an efficent and stable algorithm for generating elements of S, (A) that does not
rely on first computing the Jordan decomposition of A is a possible topic for future
investigation.

6. Concluding Remarks. This paper has explored some of the fundamental
properties of the class S, (A) of m-involutory matrices that commute with a given
diagonalizable matrix A. The constructive nature of the definition of S, (4, X)) allows
one to easily generate numerous (in some cases all) m-involutions commuting with A.
By providing a constructive means to generate elements of Sy, (A), it now becomes
easier to identify the types K,,-symmetry satisfied by a matrix A and thereby use the
body of results that has accumulated in recent years regarding K,,-symmetry. Other
results were given for the class S, (A) of m-involutory matrices that anti-commute
with A. It is hoped that the results obtained in this paper will lead to additional
insights and research related to the class S,, (A), Sy, (4), the study of K,,-symmetric
matrices, and their applications.

7. Acknowledgments. The author would like to thank the anonymous referees,
as well as David Tao and Kevin McClanahan who reviewed an earlier draft of the
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eventually taken in Section 5.

Appendix A. An Open Question (Unpublished Addendum). Let A €
C"*™ be diagonalizable with an eigenvector matrix X. Theorem 4.4 shows that
when the matrix A has at least one eigenvalue of multiplicity greater than one that
there exists a non-denumerable number of distinct sets Sy, (A4, X) as X varies over all
possible eigenvector matrices of A. While the sets Sy, (4, X) clearly have non-trivial
overlap (and Theorem 4.2 gives a lower bound on the cardinality of the intersection),
no attempt was made earlier to characterize the interaction between unshared elements
of distinct S, (4, X;) and S,, (4, X;).

The following is a basic open conjecture regarding this interaction:

CONJECTURE A.1. Let A € C™"*" be diagonalizable and suppose K; € S,, (A, X;)
and K; € Sy, (A, X;), where K; ¢ S(A,X;) NSn(4,X;) and K; ¢ S, (A, X;) N
Sm(A,X;). Then there does not exist an eigenvector matriz Xy, of A where either
K,K; € Sy (A, X)) or K;K; € Sy, (A, Xy) is satisfied, and Sy, (A, Xi) # Sm (A, X;)
and Sy, (A, Xi) # Sm (4, X;).

Appendix B. The Jordan Block Structure of Anti-Commuting Matrices
(Unpublished Addendum). Assume that the matrix A € C"*" is not the zero
matrix. When S, (4) is non-empty, part three of Theorem 5.3 asserts that any
nonzero eigenvalues of A must appear in positive and negative pairs and that the
Jordan blocks associated with each pairing must have identical block size. A proof of
this simple fact, which was omitted earlier, is provided in this appendix.

The statement that we’ll prove, which is somewhat more general than what is
needed for Theorem 5.3, is given in the following lemma.

LEMMA B.1. Let K € C"*™ be nonsingular, and suppose AK = —K A. Then the
nonzero eigenvalues of A must appear in positive-negative pairs, and each Jordan block
for an eigenvalue A # 0 must have a corresponding Jordan block for —\ of identical
size.

Proof. Given a complex number A, let Gy = {z € C"| (A — AI)" z = 0 for some k >
0} be the generalized eigenspace corresponding to A. For any « € G and k > 0 such
that (A — )\I)k x =0, we have

(27) 0=K(A-\)2=(A- D"Kz=(-1F A+ D)K.

Therefore, Kz € G_) and so K(G)) € G_,.
If X is an eigenvalue of A, then its multiplicity m()) equals the dimension, d(G)),
of G\. Therefore,

m(A) =d(Gy) =d(KGy) <d(G-x) =m(-A)

where the second equality follows from the nonsingularity of K. Since —\ is an
eigenvalue of A by (27) with k = 1, we can apply the same argument to —\ to get
that m(—XA) < m(A). Therefore the multiplicity of A and —\ is the same.

Now let By = {m, (A—)\I)J:,...,(A—)\I)k_lx} be a cyclical basis for a k-

dimensional Jordan block of A for the eigenvalue A. In other words, (A — AI)*~'z # 0,
(A —M)kz =0, and z is not in the range of (A — \I).

We wish to show that B_ = {K:c, (A+ M) Kz,... (A+ )" Kx} is a cycli-

cal basis for a k-dimensional Jordan block of A corresponding to —A, where z is the
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same vector used to construct B). First, note that
(A+AD)" " Ko = (-1)" "K(A- D"z #£0
since K is non-singular. Similarly,
(A+ M) Kz = (-1)" K (A— D))"z =0.
Now suppose that Ko = (A + AI)y for some y. Then,
Kr=(A+M)KK 'y=-K(A-\X)K™'y.

In other words, z = —(A — M) K ~'y, which contradicts the fact that z is not in the
range of (A — A\I). Therefore, Kz is not in the range of (A + AI), and we conclude
that B_, is in fact a cyclical basis for a Jordan block of the same size as B.
Clearly, m()) is equal to the sum of the size of all Jordan blocks for the eigenvalue
A, and m(—\) is equal to the sum of the size of all Jordan blocks for the eigenvalue
—A. Since we’ve already established that m(A) = m(—A\), the lemma is proved. O

Appendix C. Some Simple Examples Illustrating the Construction of
Elements in S,, (A) (Unpublished Addendum). As before, we let S, (A) denote
the class of m-involutions that anti-commute with a fixed matrix A € C"*". In what
follows, assume that the matrix A is not the zero matrix.

Although not explicitly spelled out earlier, Lemma 5.1 provides a means by which
elements of S, (A) can be constructed for n > 1 and even m > 2 (as noted in
Theorem 5.3, S,, (A) is empty when both A is nonzero and m is odd are simultaneously
true). The proof of Theorem 5.3 and some of its subsequent discussion are suggestive
of how this construction can be performed. In this appendix, we provide some simple
examples to make this more concrete for the interested reader.

Let A = X 1AX denote the Jordan canonical form of A. If AK = —KA for
some m-involution K, then it’s clear that K = X KX~ is an m-involution satisfying
AK = —KA. Consequently, focusing our attention to the Jordan canonical form of
A in the following examples is by no means restrictive.

C.1. Diagonalizable Matrices with Two Distinct Nonzero Eigenvalues.
We begin with an easy exercise, treating the general case of a diagonalizable matrix
A € C™*"™ in Jordan canonical form, where A has exactly two distinct eigenvalues,

neither of which are zero. We will assume that S, (fl) is non-empty.

First, we note that from Theorem 5.3 that if S, (121) is non-empty, then A must

have each of its nonzero eigenvalues appear in positive-negative pairs. For convenience,
we write the the Jordan canonical form of A with the following arrangement of its
eigenvalues:

—-A

In this example, Lemma 5.1’s elements b; ;, which correspond to the elements
of the prospective m-involution K, must be zero in the upper left and lower right
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n/2 x n/2 matrix blocks since A; + A\; = 2\, = 2\; # 0 for these indices. Part 2 of
Lemma 5.1 does not impose any further restrictions on the form of K, and so we have

the block representation:
s 0 Ky
K= ( Kyy O )

A and K clearly satisfy the relation AK = —KA. The condition that K be an m-
involution is not specifically addressed by Lemma 5.1 (the lemma only establishes
anti-commuting constraints), but is clearly satisfied by imposing that (K12K21)" =
Ly j25n 2, where I, /252 is the n/2 x n/2 identity matrix and m = 2r (as noted
earlier, we only need to consider the cases where m is even). In the special case where
A =1 and m = 2, we note that this example reproduces an observation made by
Kestelman in section 3.i of [5].

C.2. Defective Matrices with Two Jordan Blocks and Nonzero Eigen-
values. We next look at the case of a defective matrix A € C"*" in Jordan canonjcal
form with two Jordan blocks corresponding to nonzero eigenvalues. Since .S, ( A

will assumed to be non-empty, we note again that Theorem 5.3 states that A’s two
eigenvalues will appear as positive negative pairs A and —A and that the Jordan blocks
will have equal size. That is, A can be written in the form

A1

1
-A

Let K have a compatible block-partitioning with A’s Jordan blocks, which we

label as
= K1 K >
K= - - .
( Ko Koo

Part 1 of Lemma 5.1 shows that fgu and f(gg must be zero matrix blocks. Part 2 of
Lemma 5.1 shows that the block K15 has the form

k1 ko ks - N kn,
—k1 —ky —k3 —kn—1
ki ke ks :

—ky —ky —ksg

Similarly for Ko.


https://www.researchgate.net/publication/269022795_Anticommuting_linear_transformations?el=1_x_8&enrichId=rgreq-78b6135069ddb0a618f50fc67510eefc-XXX&enrichSource=Y292ZXJQYWdlOzIyMTY3NTE2MDtBUzoyNTczOTY2NjQ2OTY4MzJAMTQzODM3OTU1NTAyMA==
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The m-involution constraint then forces
(K121~(21> = (ffmf(zz) = Ipjaxn/2

where m = 2r and I, /2,2 is the n/2 x n/2 identity matrix.
In the special case where A € C*** K’s blocks can be written as

. b
K12:<8 a).

and the block f(gl can be written as

~ d
K21=(8 c)'

The m-involution constraint can then be expressed as (ac)” = 1 and ad — be = 0.

C.3. One More Example. We finish this appendix with a slightly more compli-
cated but concrete example, with less discussion now that the application of Lemma 5.1
is familiar.

Given X # 0, let A € C*2%!2 have the Jordan canonical form

Ji
~ J2
A= J3
J4
Js
where
A1 0
Ji1 = 0 XN 1 ,
0 0 A
-2 1 0
Jo = 0o -x 1 ,
0 0 =X
A1
JS - ( 0 )\ ) )
- 1
J4 - < 0 _)\ > 9
and

This form for A is compatible with S, (;1) being non-empty.
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Then K will have the form

Kz Ky
R Ko Kos
K= Kso K3y
Ky Ky
Kss
where
a12 b12 C12
Kio = 0 —aiz2 —bi2 )
0 0 ai12
a21 ba1 C21
Ky = 0 —ax —ba |,
0 0 a1
a14 b4
K= 0 —au |,
0 0
a3 ba3
Koz = 0 —aos3
0 0
(0 a3 bs2
K3y = ( 0 0 —as, )
(0 axn bay
K41 - ( 0 0 —ay1 > )
_( as4 bsa
K3y = ( 0 —an >
_( aus bas
K43 - ( 0 _a43 )
and

Constraints on the values of a;;, b;;, and ¢;; are imposed by the m-involution con-
straint on K. These constraints can be determined taking the m-th power of K and
setting the result equal to the identity matrix.

Appendix D. A MATLAB script For Generating m-Involutions (Un-
published Addendum). This appendix contains a basic MATLAB script for gen-
erating a particular subset of the class S,, (A). When the matrix A is non-defective,
it does this by computing the set S, (A, X) for some eigenvector matrix X of A, less

those matrices that are simply m-th root of unity multiples of another element of
Sm (4, X).
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function [kList] = kMatrices (A, m)
VIS TIIISISSISSSSSSSSSSSSSIIIIIIISo
%

% K—matrix Generator
% Version 1.0

% Copyright (c) 2011 Mark Yasuda

%

% Revision 1.1: Introduced an additional dimension to the kMatrices
% output to avoid contcatenation of the list of

% commuting m—involutions (07/31/2015).

%

% Permission is hereby granted, free of charge, to any person
% obtaining a copy of this software to use, copy, modify, merge,
% publish, and distribute it subject to the following request:

% That reference be made to the following work:

% [1] M. Yasuda, Some properties of commuting and anti—commuting
% m—involutions, Acta Mathematica Scientia, Volume 32, No. 2

% (2012), pp 631—644.

0

VSIS TTSTTS TS TSI TSI TSI TSI TSI TSI TSI TS0

% Sample usage:
% >> kList = kMatrices (A, m)

%

% Details: This function constructs commuting K—matrix m—involutions ——
% that is, given a square matrix A of dimension n, a list of

% m-involutory matrices (i.e., K'm = I) satisfying AK = KA is
% returned .

%

% When the matrix A is non—defective , it does this by computing
% the set S.m(A, X) for some eigenvector matrix X of A, less

% those matrices K that are simply m—th roots of unity multiples
% of another element of S.m(A, X). See Definition 3.1 of the
% paper [1] for the definition of S.m(A, X).

%

% Inputs: Square matrix A (complex) and an integer m > 0

%

% Outputs: Given valid inputs, a list of m—involutions K that commute
% with A is returned.

%

% Let A be a square matrix of dimension n. If A is

% non—defective , then a total of m"(n—1) matrices K satisfying
% AK = KA are returned in a 3—dimensional array. Otherwise ,
% only the identity is returned.

%

% Example: A = [1 2 3; 4 5 6; 7 8 9];

% kList = kMatrices (A, 2)

% k1l = kList (:, :, 1)

% k2 = kList (:, :, 2)

% k3 = kList (:, :, 3)

% k4 = kList (:, , 4)

%

VSSTTTISST TSI ST TSI ST TISSSTTISSSTTISSo

%

% Comments :

%

% This m—file script is a quick hack. There are probably much better
% ways to write the code. Feel free to contact me with suggested

% improvements at:

%

% mark . yasuda@gmail . com

%

TSI TTISSS TSI ST TSI TSI TTTSSIS TSI o

n = size (A, 1);

if (size(A(1l)) "= size(A(2)))
disp (’Input matrix is not square —— returning the zero matrix ’);
kList = zeros(n);
return ;

end
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if (m< 1)
disp (’Second parameter should be an integer greater than zero:’);
disp (’Returning the zero matrix ’);
kList = zeros(n);

return ;
end
if (m= 1)
disp(’m = 1: Returning the identity matrix ’);
kList = eye(n);
return ;
end

%777 Eigendecomposition Y77%
[X, D] = eig(A);

D = eye(n);
sizeX = size (X);
if (size(X(1)) "= size(X(2)))
disp (’Input matrix is defective — infinitely many solutions:’);

disp (’Returning only the identity ’);
kList = eye(n);

return ;
end
if (m = 2)
% If there are distinct eigenvalues, there will be 2"n distinct
% K matrices. We return half of them (no need to return the
% additive inverses of the ones provided).
kList = zeros(n, n, 2°(n—1));
% Fix the last diagonal element of D at 1 to avoid returning
% additive inverses of other K.
% For m == 2, we exploit the binary representation of the index
% to iterate through the 2" (n—1) elements.
for index = 1:27(n-1)
D = eye(n);
for j = 1:n—1
% for the n—1 digits we are considering , assign
% D’s jth diagonal element a —1 if bit j is 1
if (bitget(uint8(index), j) == 1)
D(j,j) = -1
end
end
% D
kList (:, :, index) = X«Dxinv (X);
end
else

% 1f there are distinct eigenvalues, there will be m'n
% distinct K matrices. We return a set that avoids

% trivial multiples of m-th roots of unity of other

% K—matrices .

kList = zeros(n, n, m " (n—1));

rootOfUnity = exp(2*pi*i/m);

% Fix the last diagonal element of D at 1 to avoid
% returning additive inverses of other K

for iterationValue = 0:m”"(n—1) — 1
D = eye(n);
% Note that one can utilize a base—m expansion to
% iterate through the m"n solutions, m"(n—1) of

% which are returned (avoiding scalar multiples of
% other solutions). The base—m expansion uses the
% MATLAB/Octave functions dec2base, substr, and
% str2num to extract the base—m digits.
baseStringExpansion = dec2base(iterationValue, m, n);
for j = 2:n
digitValue = str2num (substr(baseStringExpansion ,
D(j,j) = power(rootOfUnity, digitValue);
end
indexValue = iterationValue + 1;

is

1));
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kList (:, :, indexValue) = Xx«Dxinv (X);
end
end
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