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Abstract. Recently, we used the Sinc collocation method with the double exponential

transformation to compute eigenvalues for singular Sturm-Liouville problems. In this

work, we show that the computation complexity of the eigenvalues of such a differen-

tial eigenvalue problem can be considerably reduced when its operator commutes with

the parity operator. In this case, the matrices resulting from the Sinc collocation method

are centrosymmetric. Utilizing well known properties of centrosymmetric matrices, we

transform the problem of solving one large eigensystem into solving two smaller eigen-

systems. We show that only 1
N+1 of all components need to be computed and stored in

order to obtain all eigenvalues, where 2N + 1 corresponds to the dimension of the eigen-

system. We applied our result to the Schrödinger equation with the anharmonic potential

and the numerical results section clearly illustrates the substantial gain in efficiency and

accuracy when using the proposed algorithm.

Keywords Sinc collocation method. Centrosymmetry. Sturm-Liouville eigenvalue problem.

Schrödinger equation. Anharmonic oscillators

1 Introduction

In science and engineering, differential eigenvalue problems occur abundantly. Differential eigen-

value problems can arise when partial differential equations are solved using the method of separation

of variables. Consequently, they also play an important role in Sturm-Liouville (SL) differential eigen-

value problems [1]. For example, the solution of the wave equation can be expressed as a sum of stand-

ing waves. The frequencies of these standing waves are precisely the eigenvalues of its corresponding

Sturm-Liouville problem. Similarly, in quantum mechanics, the energy eigenvalues associated with a

Hamiltonian operator are modelled using the time-independent Schrödinger equation which is in fact

a special case of the Sturm-Liouville differential eigenvalue problem.

Recently, collocation and spectral methods have shown great promise for solving singular Sturm-

Liouville differential eigenvalue problems [2, 3]. More specifically, the Sinc collocation method

(SCM) [4–6] has been shown to yield exponential convergence. During the last three decades the
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SCM has been used extensively to solve many problems in numerical analysis. The applications in-

clude numerical integration, linear and non-linear ordinary differential equations, partial differential

equations, interpolation and approximations to functions [7, 8]. The SCM applied to Sturm-Liouville

problems consists of expanding the solution of a SL problem using a basis of Sinc functions. By

evaluating the resulting approximation at the Sinc collocation points separated by a fixed mesh size

h, one obtains a matrix eigenvalue problem or generalized matrix eigenvalue problem for which the

eigenvalues are approximations to the eigenvalues of the SL operator. In [9], we used the double ex-

ponential Sinc collocation method (DESCM) to compute the eigenvalues of singular Sturm-Liouville

boundary value problems. The DESCM leads to a generalized eigenvalue problem where the matrices

are symmetric and positive-definite. In addition, we demonstrate that the convergence of the DESCM

is of the rate O
(

N5/2

log(N)2
e−κN/ log(N)

)
for some κ > 0 as N → ∞, where 2N + 1 is the dimension of the re-

sulting generalized eigenvalue system. The DESCM was also applied successfully to the Schrödinger

equation with the anharmonic oscillators [10].

In the present contribution, we show how the parity symmetry of the Sturm-Liouville operator can

be conserved and exploited when converting the differential eigenvalue problem into a matrix eigen-

value problem. Indeed, given certain parity assumptions, the matrices resulting from the DESINC

method are not only symmetric and positive definite; they are also centrosymmetric. The study of

centrosymmetry has a long history [11–20]. However, the last two decades has stemmed much re-

search focused on the properties and applications of centrosymmetric matrices ranging from iterative

methods for solving linear equations to least-squares problems to inverse eigenvalue problems [21–

36].

Using the eigenspectrum properties of symmetric centrosymmetric matrices presented in [13], we

apply the DESCM algorithm to Sturm-Liouville eigenvalue problems and demonstrate that solving

the resulting generalized eigensystem of dimension (2N + 1) × (2N + 1) is equivalent to solving two

smaller eigensystems of dimension N × N and (N + 1) × (N + 1). Moreover, we also demonstrate

that only 1
N+1 of all components need to be stored at every iteration in order to obtain all general-

ized eigenvalues. To illustrate the gain in efficiency obtained by this method, we apply the DESCM

method to the time independent Schrödinger equation with an anharmonic potential. Furthermore,

it is worth mentioning that research concerning inverse eigenvalue problems where the matrices are

assumed centrosymmetric has been the subject of much research recently [26, 31]. Consequently, the

combination of these results and our findings could lead to a general approach for solving inverse

Sturm-Liouville problems.

All calculations are performed using the programming language Julia and all the codes are avail-

able upon request.

2 Definitions and basic properties

The sinc function valid for all z ∈ C is defined by the following expression:

sinc(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sin(πz)
πz

for z � 0,

1 for z = 0.

(1)

For j ∈ Z and h a positive number, we define the Sinc function S ( j, h)(x) by:

S ( j, h)(x) = sinc

(
x − jh

h

)
for x ∈ C. (2)
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The Sinc function defined in (2) form an interpolatory set of functions with the discrete orthogo-

nality property:

S ( j, h)(kh) = δ j,k for j, k ∈ Z, (3)

where δ j,k is the Kronecker delta function.

Definition 2.1 [7] Given any function v defined everywhere on the real line and any h > 0, the
symmetric truncated Sinc expansion of v is defined by the following series:

CN(v, h)(x) =
N∑

j=−N

v j,h S ( j, h)(x), (4)

where v j,h = v( jh).

The Sturm-Liouville (SL) equation in Liouville form is defined as follows:

Lu(x) = −u′′(x) + q(x)u(x) = λρ(x)u(x),

a < x < b, u(a) = u(b) = 0, (5)

where −∞ ≤ a < b ≤ ∞. Moreover, we assume that the function q(x) is non-negative and the weight

function ρ(x) is positive. The values λ are known as the eigenvalues of the SL equation.

In [9], we applied the DESCM to obtain an approximation to the eigenvalues λ of equation (5).

We initially applied Eggert et al.’s transformation to equation (5) since it was shown that the proposed

change of variable results in a symmetric discretized system when using the Sinc collocation method

[37]. The proposed change of variable is of the form [37, Defintion 2.1]:

v(x) =
(√

(φ−1)′ u
)
◦ φ(x) =⇒ u(x) =

v ◦ φ−1(x)√
(φ−1(x))′

, (6)

where φ−1(x) is a conformal map of a simply connected domain in the complex plane with boundary

points a � b such that φ−1(a) = −∞ and φ−1(b) = ∞.

Applying the change of variable (6) into equation (5), one obtains [37]:

L v(x) = −v′′(x) + q̃(x)v(x) = λρ(φ(x))(φ′(x))2v(x) with lim
|x|→∞

v(x) = 0, (7)

where:

q̃(x) = −√
φ′(x)

d

dx

(
1

φ′(x)
d

dx
(
√
φ′(x))

)
+ (φ′(x))2q(φ(x)). (8)

To implement the double exponential transformation, we use a conformal mapping φ(x) such that

the solution to equation (7) decays double exponentially. In other words, we need to find a function

φ(x) such that:

|v(x)| ≤ A exp
(−B exp (γ|x|)) , (9)

for some positive constants A, B, γ. Examples of such mappings are given in [9, 38].

Applying the SCM method, we obtain the following generalized eigenvalue problem:

LCM(v, h) = Av = μD2v =⇒ (A − μD2)v = 0, (10)

where the vectors v and CM(v, h) are given by:

v = (v−N,h, . . . , vN,h)
T and CN(v, h) = (CN(v, h)(−Nh), . . . ,CN(v, h)(Nh))T , (11)
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and μ are approximations of the eigenvalues λ of equation (7). For more details on the application of

the SCM, we refer the readers to [9].

As in [39], we let δ(l)j,k denote the lth Sinc differentiation matrix with unit mesh size:

δ(l)j,k = hl
(
d

dx

)l

S ( j, h)(x)

∣∣∣∣∣∣∣
x=kh

. (12)

The entries Aj,k of the (2N + 1) × (2N + 1) matrix A are then given by:

Aj,k = − 1

h2
δ(2)j,k + q̃(kh) δ(0)j,k with − N ≤ j, k ≤ N, (13)

and the entries D2
j,k of the (2N + 1) × (2N + 1) diagonal matrix D2 are given by:

D2
j,k = (φ′(kh))2ρ(φ(kh)) δ(0)j,k with − N ≤ j, k ≤ N. (14)

As previously mentioned, Eggert et al.’s transformation leads to matrices A and D2 which are

symmetric and positive definite. However, as will be illustrated in the next section, given certain

parity assumptions, these matrices yield even more symmetry.

3 Centrosymmetric properties of the matrices A and D2

In this section, we present some properties of the matrix A and D2 that will be beneficial in the

computation of their eigenvalues. The matrices A and D2 are symmetric positive definite matrices

when equation (7) is discretized using the Sinc collocation method. Additionally, given certain parity

assumptions on the functions q(x), φ(x) and ρ(x) in equation (7), the matrices A and D2 will also be

centrosymmetric.

Definition 3.1 [40, Section 5.10] Let J denote the parity operator defined by:

J f (x) = f (−x), (15)

where f (x) is a well defined function being acted upon by J .

Definition 3.2 An operatorB is said to commute with the parity operatorJ if it satisfies the following
relation:

BJ f (x) = JB f (x). (16)

Equivalently, we can say that the the commutator between B and J is zero, that is:

[B,J] = BJ − JB = 0. (17)

Definition 3.3 [16, Definition 5] An exchange matrix denoted by J is a square matrix with ones along
the anti-diagonal and zeros everywhere else:

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1

. .
.

1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (18)
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Definition 3.4 [16, Definition 2] Let B be a matrix of dimension (2N +1)× (2N +1) with components
Bj,k for −N ≤ j, k ≤ N. B is centrosymmetric if and only if B satisfies the following property:

BJ = JB, (19)

where J is an exchange matrix of dimension (2N+1)×(2N+1). Writing equation (19) in a component
wise form, we have the following relation:

B− j,−k = Bj,k for − N ≤ j, k ≤ N. (20)

We now present the following theorem establishing the connection between symmetries of the

Sturm-Liouville operator and its resulting matrix approximation.

Theorem 3.5 Let L denote the operator of the transformed Sturm-Liouville problem in equation (7):

L = 1

ρ(φ(x))(φ′(x))2

(
− d2

dx2
+ q̃(x)

)
. (21)

If the commutator [L,J] = 0, where J is the parity operator, then the matrices A and D2 defined by
equations (13) and (14) resulting from the DESCM are centrosymmetric.

Proof The commutator [L,J] vanishes if and only if q(x) and ρ(x) are even functions and φ(x)
is an odd function.

If φ(x) is an odd function, then φ′(x) is even, φ′′(x) is odd and φ′′′(x) is even. From this and

equation (8), it follows that q̃(x) is even.
In order to show that the resulting matrices A and D2 are centrosymmetric, we demonstrate that

both these matrices satisfy equation (20). Before doing so, it is important to notice that the lth Sinc
differentiation matrices defined in equation (12) have the following symmetry properties:

δ(l)− j,−k = hl
(
d

dx

)l

S (− j, h)(x)

∣∣∣∣∣∣∣
x=−kh

=

⎧⎪⎪⎨⎪⎪⎩
δ(l)j,k if l is even,

−δ(l)j,k if l is odd.
(22)

Hence, the lth Sinc differentiation matrices are centrosymmetric if l is even. It is worth noting

that when l is odd, the Sinc differentiation matrices are skew-centrosymmetric [30]. Consequently,

investigating the form for the components of the matrix A in equation (13), we obtain:

A− j,−k = − 1

h2
δ(2)− j,−k + q̃(−kh) δ(0)− j,−k

= − 1

h2
δ(2)j,k + q̃(kh) δ(0)j,k

= Aj,k. (23)

Similarly, investigating the form for the components of the matrix D2 in equation (14), we obtain:

D2
− j,−k = (φ′(−kh))2ρ(φ(−kh)) δ(0)− j,−k

= (φ′(kh))2ρ(φ(kh)) δ(0)j,k

= D2
j,k. (24)

Both matrices A and D2 satisfy equation (20). From this it follows that A and D2 are centrosym-

metric.
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Theorem 3.5 illustrates that Sinc basis functions preserve the parity property of the Sturm-

Liouville operator when discretized. Hence, when the matrices A and D2 are symmetric centrosym-

metric positive definite matrices, we can utilize these symmetries when solving for their generalized

eigenvalues. In [13], Cantoni et al. proved several properties of symmetric centrosymmetric matrices.

In the following, we will utilize some of these properties to facilitate our task of obtaining approxima-

tions to the generalized eigenvalues of the matrices A and D2. The following lemma will demonstrate

the internal block structure of the symmetric centrosymmetric matrices.

Lemma 3.6 [13, Lemma 2] If H is a square symmetric centrosymmetric matrix of dimension (2N +
1) × (2N + 1), then H can be written as:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
S x CT

xT h xTJ
C Jx JS J

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (25)

where S,C are matrices of size N × N, J is the exchange matrix of size N × N, x is a column vector of
length N and h is a scalar. In addition, ST = S and CT = JCJ.

The next lemma simplifies the calculation needed to solve for these eigenvalues.

Lemma 3.7 [13, Lemma 3] Let H be a square symmetric centrosymmetric matrix as defined in lemma
3.6 and let V be a square matrix of dimension (2N + 1) × (2N + 1) defined by:

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
S − JC 0 0

0 h
√
2 xT

0
√
2 x S + JC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (26)

then H and V are orthogonally similar. That is, the matrices H and V have the same Jordan normal
form and thus the same eigenvalue spectrum.

Cantoni et al. use Lemmas 3.6 and 3.7 to prove the following theorem concerning a standard

eigenvalue problem where the matrix is centrosymmetric.

Theorem 3.8 [13, Theorem 2] Let H be a square symmetric centrosymmetric matrix as defined in
Lemma 3.6, then solving the eigenvalue problem det(H − λI) = 0 is equivalent to solving two smaller
eigenvalue problems:

det(S − JC − λI) = 0 and det

([
h

√
2 xT√

2 x S + JC

]
− λ

[
1 0
0 I

])
= 0. (27)

Since our problem consists of solving a generalized eigenvalue problem where one matrix is a

full symmetric centrosymmetric and the other is a diagonal centrosymmetric matrix, we propose the

following theorem.

Theorem 3.9 Let H and W be square symmetric centrosymmetric matrices of the same size, such
that:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
S x CT

xT h xTJ
C Jx JS J

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ and W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
diag (w) 0 0

0 w 0
0 0 Jdiag (w)J

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (28)

then solving the generalized eigenvalue problem det(H−λW) = 0 is equivalent to solving two smaller
generalized eigenvalue problems:

det(S − JC − λdiag (w)) = 0 and det

([
h

√
2 xT√

2 x S + JC

]
− λ

[
w 0
0 diag (w)

])
= 0. (29)
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Proof This proof relies on the unitary transformation matrix presented in [13, Lemma 3]:

K =
1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
I 0 −J
0

√
2 0

I 0 J

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (30)

where I is the identity matrix and J is the exchange matrix.

It is easy to verify that:

KHKT = V, (31)

where V is the matrix in lemma 3.7.

This result is analogous for the matrix W with a change in notation. Hence:

0 = det(H − λW)

= det(K) det(H − λW) det(KT)

= det(KHKT − λKWKT)

= det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S − JC 0 0
0 h

√
2 xT

0
√
2 x S + JC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ − λ
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
diag (w) 0 0

0 w 0
0 0 diag (w)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= det(S − JC − λdiag (w)) det

([
h

√
2 xT√

2 x S + JC

]
− λ

[
w 0
0 diag (w)

])
, (32)

from which the result follows.

Theorem 3.9 is very useful when N is large since it is less costly to solve two symmetric general-

ized eigensystems of dimensions N × N and (N + 1)× (N + 1) rather than one symmetric eigensystem

of dimension (2N+1)× (2N+1). Additionally, Lemma 3.6 also has large ramifications when it comes

to saving storage space. As is discussed in [39], the lth Sinc differentiation matrices are symmetric

Toeplitz matrices. Therefore, for a symmetric Toeplitz matrix of dimension (2N + 1)× (2N + 1), only
2N + 1 elements need to be stored. Investigating the definition of the matrix A in equation (13), we

can see that A is defined as a sum of a symmetric Toeplitz matrix and a diagonal matrix. Moreover,

from Lemma 3.6 and theorem 3.9, using only the antidiagonal and anti-upper triangular half of matrix

C, the vector x, the scalar h, the diagonal and lower triangular half of the matrix S, the vector w and

the scalar w, we can create all the elements needed to solve for the generalized eigenvalues of the

matrices A and D2. Hence, the ratio of elements needed to be computed and stored at each iteration

N in order to solve for these eigenvalues is given by:

Proportion of Entries Needed =
(2N + N + 1) + (N + 1)
(2N + 1)2 + (2N + 1)

=
1

N + 1
. (33)

Thus, only 1
N+1 of the entries need to be generated and stored at every iteration to obtain all of the

generalized eigenvalues.

In the following section, we will illustrate the gain in efficiency of these results by applying the

DESCM to the Schrödinger equation with an anharmonic oscillator.

4 The anharmonic oscillator

The time independent Schrödinger equation is given by:

H ψ(x) = E ψ(x) with lim
|x|→∞

ψ(x) = 0. (34)
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In equation (34), the Hamiltonian is given by the following linear operator:

H = − d2

dx2
+ V(x),

where V(x) is the potential energy function and E is the energy eigenvalue of the Hamiltonian operator

H . In our case, we are treating the anharmonic oscillator potential V(x) defined by:

V(x) =
m∑

i=1

cix2i with cm > 0 and m ∈ N\{1}. (35)

In [10], we successfully applied the DESCM to time independent Schrödinger equation with an

anharmonic potential. As we can see, the time independent Schrödinger equation (34) is a special

case of the Sturm-Liouville equation with q(x) = V(x) and ρ(x) = 1. Applying Eggert et al.’s trans-

formation and the DESCM with φ(x) = sinh(x), we arrived at the following generalized eigenvalue

problem:

det(A − ED2) = 0, (36)

where E are approximations of the energy eigenvalues E.
The matrices A and D2 defined by equation (13) and (14) are given by:

Aj,k = −
(
1

h2

)
δ(2)j,k + Ṽ(kh)δ(0)j,k with − N ≤ j, k ≤ N, (37)

where:

Ṽ(x) =
1

4
− 3

4
sech2(x) + cosh2(x)

m∑
i=1

ci sinh
2i(x), (38)

and:

D2
j,k = cosh2(kh) δ(0)j,k with − N ≤ j, k ≤ N. (39)

Since the anharmonic potential V(x) defined in (35) is an even function, the function ρ(x) = 1 is

an even function and the conformal map φ(x) = sinh(x) is an odd function, we know that theorem 3.5

applies. Hence, the matrices A and D2 are symmetric centrosymmetric.

5 Numerical Discussion

In this section, we test the computational efficiency of the results obtained in theorem 3.9. All cal-

culations are performed using the programming language Julia in double precision. The eigenvalue

solvers in Julia use the linear algebra package LAPACK.
In [41], Chaudhuri et al. presented several potentials with known analytic solutions for energy

levels calculated using supersymmetric quantum mechanics, namely:

V1(x) = x2 − 4x4 + x6 ⇒ E0 = −2,
V2(x) = 4x2 − 6x4 + x6 ⇒ E1 = −9,
V3(x) = (105/64)x2 − (43/8)x4 + x6 − x8 + x10 ⇒ E0 = 3/8,
V4(x) = (169/64)x2 − (59/8)x4 + x6 − x8 + x10 ⇒ E1 = 9/8.

(40)

Figure 1 presents the absolute error between our approximation and the exact values given in (40).

The absolute error is defined by:

Absolute error = |El(N) − Exact value| for l = 0, 1. (41)
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The optimal mesh size obtained in [10]:

h =
W

(
2mπ2(m+1)N√

cm

)
(m + 1)N

, (42)

where W(x) is the Lambert W function, is used in the calculation.

As can be seen from Figure 1, using the centrosymmetric property improves the convergence rate

of the DESCM significantly.
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Figure 1. Absolute error for the potentials Vi(x) for i = 1, 2, 3, 4 given by (40) with φ(x) = sinh(x).
(a) V1(x) = x2 − 4x4 + x6 with exact eigenvalue E0 = −2. (b) V2(x) = 4x2 − 6x4 + x6 with exact eigenvalue

E1 = −9. (c) V3(x) = (105/64)x2 − (43/8)x4 + x6 − x8 + x10 with exact eigenvalue E0 = 3/8. (d) V4(x) =
(169/64)x2 − (59/8)x4 + x6 − x8 + x10 with exact eigenvalue E1 = 9/8.
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6 Conclusion

Sturm-Liouville eigenvalue problems are abundant in scientific and engineering problems. In certain

applications, these problems possess a symmetry structure which results in the Sturm-Liouville oper-

ator to be commutative with the parity operator. As was proven in theorem 3.5, applying the DESCM

will preserve this symmetry and results in a generalized eigenvalue problem where the matrices are

symmetric centrosymmetric. The centrosymmetric property leads to a substantial reduction in the

computational cost when computing the eigenvalues by splitting the original eigenvalue problem of

dimension (2N + 1) × (2N + 1) into two smaller generalized eigensystems of dimension N × N and

(N + 1) × (N + 1). Moreover, due to the internal block structure of the matrices obtained using the

DESCM, we have shown that only
1

N + 1
of all entries need to be computed and stored at every itera-

tion in order to find all of their eigenvalues. Numerical results are presented for the time independent

Schrödinger equation (34) with an anharmonic oscillator potential (35). Four exact potentials with

known eigenvalues are tested and the results clearly demonstrated the reduction in complexity and

increase in convergence.
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