Chapter 4

Determinants of Graphs of Graphs

This chapter is divided into 6 scctions. In scction 4.1, we study the determinant
of union of graphs with a common vertex. In section 4.2 , 4.3, 4.4, 4.5 and 4.6 we
provide result for the determinant of P, (P,y,), Cn(Pn), P.(Cy), W,(m) and Cn(Cr) ,

respectively.

4.1 Union of Graphs with a common vertex

Definition 4.1.1. Suppose that graphs G and H arc given. A graph F' is said to be a
G — graph of H's (or G of H's, in short ) provided that

(1) V(F) =V(G) x V(H);

(2) {(u, ), (v,y)} € E(F) < {z,y} € E(H), for cach v € V(G) and z,y €
V(H);

(3) for cach {u,v} € E(G) there exists exactly onc edge in F' that joins (u,x)
and (v,y), for some z,y € V(H), and if there is an edge in F' that joins (u,z) and

(v,y), with u # v, then {u,v} € E(G).

Note that the subgraph of F induced on the set {u} x V(H) is isomorphic to
H, for all u € V(G). So, roughly speaking, one receives any G -graph of H's if one
substitutes cach vertex of G by a copy of the graph H . Onc can sce the operation of
forming G-graphs of H's as a (non-commutative) graph product and one casily shows
its associativity. In the sequel, we will assume that G's and H's are paths and / or
cycles and, in result, we will consider paths of paths, cycles of paths, paths of cycles

and cycles of cycles.
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Py(Ps) : Ce(P2) :

P3(Cs) : C/\:} C::} C:] C3(Cy) :

To make the definition of paths(or cycles) of cycles unique one should reformulate
the clause 3 of the above definition. So, let us define G(C,,) as the G-graph of C; s
such that

3’) there is an cdge in F that joins (u,z) with (v,y) (for v # v) if and only if
{uv,v} € E(G)and z =y = 1.

Let us notice that G(C,,) is defined uniquely. Observe that both graphs in
the diagram above arc 3-clement paths of Cgs but only the sccond of them is P3(Cs).
Similarly, both graphs presented below are 3 - element cycles of Cjs but only onc of
them is C3(Cy). We shall refer to graphs of the form C,(C,y), for n,m > 3, as necklace

graphs.

RG]
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It is clear that the adjacency matrix depends on the labeling of the vertices.
However, we arc interested in those propertics of the matrix which are invariant under
permutations of its row and columns corresponding to permutations of the sequence
V1, Vs, ..., V. Foremost among such properties is the value of the determinant of A(G).
In particular, we shall say that a graph G is singular if det A(G) = 0. It is an immediate
corollary of the following obvious (and well-known) lemma that a graph is singular if

(at least) one of its components is singular.
Lemma 4.1.2. If G and H are (vertez) disjoint graphs, then
det A(GU H) = det A(G) - det A(H)

There are results in literature by use of which one can compute the determinant
of the adjacency matrix of some graphs. In particular, sce Proposition 2.3.8.

However, computations of the determinant of any nxn matrix for a large number
n are generally difficult. One of the methods which applies there is the reduction of
(computations of the determinant of the adjaccﬁcy matrix for) certain graphs to its
proper subgraphs. Rara’s paper [22] contains some uscful reduction formulas. Another

result of this type is presented below.
Theorem 4.1.3. Let G and H be graphs such that V(G) NV (H) = {z}.Then

det A(GU H) = det A(G\z) - det A(H) + det A(H\z) - det A(G).

GUH:
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Proof. Let T be a sesquivalent spanning subgraph of GU H. Since z € V/(T'), there
is a vertex y € V(') = V(G) U V(H) such that {z,y} € E(I'). We have the following
two possibilities to consider.

1) y € V(G). If {z,y} is a separate edge in T', then {z,2z} € E(T) for none
z € V(H). Similarly, if z and y are elements of a cycle in I, then the cycle must be
included in G (as according to our assumptions, z is the only common vertex of the
graph G and H), and hence {z, z} € E(T) for none z € V(H). In result, I' is a subgraph
of GU (H\x).

2) y € V(H). Then by an analogous argument, I is a subgraph of (G \ z) U H.
Thus, cach sesquivalent spanning subgraph of GUH is, either a subgraph of GU(H\z),
or of (G'\ z) U H. Morcover, it cannot be a subgraph of both. By using Proposition
2.3.8 and Lemma 4.1.2) so

det A(GU H) = det A((G\ ) U H) +det A((H \ ) UG)

= det A(G \ z) - det A(H) + det A(H \ z) - det A(G) =

The following two results arc Rara’s reduction formulas from [3]. They are

immediate consequences of the thcorem above.

Corollary 4.1.4. Let = be a vertex of a graph G. If G* is the graph obtained by adding
to G a new vertez y together with the edge {x,y} (see the diagram), then

det A(G*) = —det A(G\ z)



Proof. Take as H the graph consisting of (two vertices and) the edge {z,y} and
apply the above theorem. It suffices to notice, that det A(H) = —1 and det A(H\z) =0

as H\z is onc clement graph without edges. ]

Corollary 4.1.5. Suppose that G and H are two disjoint graphs and let F' be the graph
obtained by joining a vertex x of the graph G to a vertex y of H by a new edge(see the

diagram below). Then

det A(F) = det A(G) - det A(H) — det A(G\z) - det A(H\y)

Proof. Let G* be defined as in the above corollary with z € V(G) and y € V(H).
Then, by Theorem 4.1.3, we get

det A(G*U H) = det A(G) - det A(H) + det A(H\y) - det A(G*)

= dct A(G) - det A(H) — det A(H\y) - det A(G\z). n
We can use Theorem 4.1.3 for computation of the determinant of the adjacency

matrix for many graphs. For instance, suppose that G and H are cycles

Then, by corollary 4.1.4 and corollary 4.1.5, we casily get
0 ifm=0orm=n=20r m+2=n=23;
det A(F) = —4 fm+l=n=20r m=n=23
4 ifm+1=n=3 orm=n=1.

where the cquations m = 0 cte. are, clearly, mcant modulo 4.
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4.2 Path of Paths

In this section we compute the determinant of path of paths. We start by providing

definition of the object.

Definition 4.2.1. Let m, n be positive integers such that n > 1. Let P,(F,,) be a graph
with the vertex sct V(P,(Py)) = {ijli = 1,2,...,nand j = 1,2, ...,m} and the edge set
E(P.(P)) = {{ij,ik}|{j, k} € E(P,)U{{:l,k1}|{i,k} € E(P,)}}. We call this graph
the path P, of paths P,,.

Example 4.2.2. The path Py of paths Pj.

11 24l 31 41 o1
[ 4 f ®

12 22 32 42 52
® [ ] o

Ps(Py) - : ,

13 23 33 43 53
[ ] ? [ ] [

14 24 34 44 54
[ [ ) [ ] [ J

Next, we recall that the determinant of path P,.
Lemma 4.2.3. Let P, be a path of n wvertices. Then

(=1)*  ifn =2k for some k € Z*,
det(A(FP,)) =

0 otherunse.
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Theorem 4.2.4. Let P,(P,,) be a path, of the order n, of paths Py, where n > 1 and
m > 2. Then

0 if mm is odd,
det A(PL(Pn)) =

nm

(-1)=z ifnmis cven.

Proof. We prove our theorem by induction on n. If n =1, it follows from corollary 4.1.5.
Suppose that n = 2, then P,(P,,) is a path of order 2m, so det A(Pa(Fn)) = (= e
which means that our theorem hold for n = 2.

Next, we suppose n = k is true for all m > 2. Then we will show that it is truc
when n = k + 1. Then, by corollary 4.1.5

det A(P,(P,.)) = det A(Py(P)) - det A(P,,) — det A(Pe—1(Pn)) - det A(Py1) -
det A(P,,—1). If m is cven, then det A(P,,—1) = 0.and mn is cven.

So det A(Py(Py)) = det A(Py(P)) - det A(Pn) = (=1)%(=1)% = (-1)™%#*

(il 2 which is what we need to prove. If m is odd, there are two possible cases.

casel - m =k + 1 is even. Then, since det A(P,,) =0,

det A(Py(FPn)) = —det A(Pr_1(Py)) - [det A(Pm_1)]?

rn.(k 1) z(m 1)

=l T (=1

casell :n =k +1is odd. Then
det A(Py(Py)) = — det A(Py—1(P)) - [det A(Prn—1)]*.

Since k — 1 is odd and m is odd, by the induction hypothesis, det A(Px—1(Pn)) = 0,
m(k —1) is odd. So det A(Py—1(P)) = 0, then det A(Py(Pn)) = 0.
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4.3 Cycle of Paths

In this section we compute the determinant of cycle of paths. We start by providing

definition of the object.

Definition 4.3.1. Let m, n be positive integer such that n > 3. Let C,(P.) be a graph
with the vertex set V(Co(Pn)) = {3 | i = 1,2,...,n and j = 1,2,...,m} and the edge
sct E(Co(Pn)) = {{i4,ik} | {j, k} € E(Pn)}U {{i1,k1} | {i,k} € E(C,)} we call this
graph, the cycle C,, of paths P,,.

Example 4.3.2. The cycle Cg of paths Ps.

43

CG(P:;) : 13k

Next, we recall that the determinant of cycle C,,.
Lemma 4.3.3. Let n > 3. Then

0 ifn = 0(modd) for some k € Z™,
det(A(CL)) = ¢ —4 if n = 2(mod4)

2 otherunse.
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Theorem 4.3.4. Let n > 3 and m > 1. Then
( nm & .
(—1)= if m s even;

2(—1)&'3:—1 if n and m is odd;
det A(Cr(P)) = S N
4(-1)" = if m is odd and n = 2(mod4);

0 if m is odd and n = 0(mod4).

\

Proof. We can apply Theorem 4.1.3 to derive, step by step paths P, from a given

necklace (sce the picture below).

P,

Denote the above graph by Go. At the first step (of our iteration) we get

})111 Pn—l(Rn) Rn—l Rn

det(A( ™, + det(A( )

and det A(Gy) = det A(P,,) - det A(Py—1(Pn)) + det A(Pr_y) - det A(G1) where Gy,
results from Gy by the iteration of one of the paths F,.
If m is cven, then det A(P,—1) = 0.
So det A(Gy) = det A(P,,) - det A(Po-1(Phr))

m(n=-1)

= (-1)% - (-

If m is odd, then det A(P,_1(P,)) = 0.
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So  det A(Gy) = det A(P,—1) - det A(Gh))

m—

= (=) dot (G

Next, we need to compute det A(G). We continue the iteration process in a similar

fashion and at the 4 — th step we get the following graph, denoted by G,

I

i)
xI;

which there arc lacking ¢ — th copics of P,,. We also get

det A(G;—) = (—l)m - det A(G;).

Clearly, we have a scquence of graphs Gy, Gy, ..., G, where Gy is the initial
graph and G, is C, and G;, 1 < n is obtained from the original graph G, by deletion

of i — paths. Thus

det A(Gp) = (-1)"7 * det A(Gh)

— (=" (=) & et AlC>)]

m—1

=(=1)"F - (=)™ ... (-1)"FT = - det A(G))

rn 1
=[(—=1)"= |* - det A(C,).
Comparing this result with the formula for the derivative of a cycle we obtain the

result of the theorem following

if n is odd, then det A(Gy) = 2(— )”m

if n = 0(mod4), then det A(Gy) = 4(—1) 2mont2
if n = 2(mod4), then det A(Gp) = 0.
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4.4 Path of Cycles

Theorem 4.4.1. Let F' be a path, of the order n, of cycles C,,,, where n > 1 and m > 3.
Then

0 if m= 0(mod 4);
det A(F) = (=4)" if m =2(mod 4);
n+1 otherwise.

Proof. We prove our theorem by induction on n. If n =1, it follows immediately

from Lemma 4.3.3. Suppose that n = 2. By Corollary 2.3.8, we get

det A(F) = det A(C,,) - det A(C,,) — det A(Cy\z) - det A(C\y)

= det A(C,,) - det A(C,p,) — det A(Py—q) - det A(P—y).
If m = 0(mod4), then det A(C,,) = 0 = det A(Pp—1) - det A(Ppr-1), and hence
det A(F) = 0 by Lemma 4.2.3 and Lemma 4.3.3.
If m = 2(mod4), then det A(C,,) = —4 and det A(P,,—1) = 0, and hence det A(F') =
(—4)? — 0 = 16.
If mn is odd, then det A(C,,) = 2 and det A(Py,—1) = (—1)%—1, and hence det A(F) =

22 — 1 = 3. Thercfore,

0 if m = 0(mod4);
det A(F') = ¢ 16 if m = 2(mod4);
3 otherwisc.
Which mecans that our thcorem holds for n = 2.
Suppose that F' is a path, of the order n > 2, of cycles C,,, and assume that
our theorem holds for cach k—path, with k& < n, of cycles. Then we can claim that the
graph F' results by the "bridge” operation (sce Corollary 2.3.8) applied to its subgraph

G, which is a (n — 1)—path of cycles, and a copy of C,,
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SR SR OSRE.

Then, by Corollary 2.3.8,
det A(F) = det A(G) - det A(Crr) — det A(G\z) - det A(Crn\y)-

We know det A(G)(by inductive hypothesis), and det A(Cy) (by Theorem 3.1.8),
and det A(C,,\y) (note that C,,\y is a path and apply Corollary 3.2.7). We do not
know det A(G\x), but it does not matter if m is even. Then
if m = 0(mod4), then det A(C,) = det A(P,,—1) = 0 and hence we get det A(F) = 0;
if m = 2(mod4), then det A(C,,) = —4 and det A(G) = (—4)""; since det A(P-1) =0,
we get det A(F) = det A(C,,) - det A(G) = (—4)™.

Suppose that m is odd. Then det A(P,-1) = (—1)”2;], and det A(C,,) = 2, and
det A(G) = n. There remains to compute det A(G\z).

Note that the case with 2 = z (sce the diagram above) is not excluded. However,
if it takes place, the computation of det A(G\z) is relatively easy. Then H consists of
two disjoint subgraphs. One of them is a path, of the order n — 2, of cycles, and the
sccond onc is a copy of P,_;. Then by Lemma 4.1.2, det A(G\z) = (—l)m”;_l(n -1)
and henee det A(F) =2n—(n—1)=n+1. E

Thus, we have computed the determinant of any path of similar cycles. There
arc many non-isomorphic paths (of order n) of C;, s but, surprisingly, the determinant
of the adjacency matrix of cach of them is the same. The determinant depends on m
and n, nothing clse. In particular, it does not depend on the way in which the cycles are
joined into a path(see the picture above). Our method of computing is more general .
It could be applied, as well, to paths of cycles of different size. We have not introduced,
however, such structures in our this work. Instead, let us illustrate the method by an
example. This time we will refer to Theorem 4.1.3, instead of corollary 4.1.5, as in
the proof of the above thecorem, and cach graph will represent the determinant of its

adjacency matrix.
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Example 4.4.2. Consider the following graph

T Ty Ty

T2 T3 Ts Tg T8 Tg

dot A(Py(Cy)) = det A(Py(C5) \ {z4,57}) + det A(Ps(Cs) \ {z7, 35} U {z7,70})
= dot A(P3(Cy) \ {z4,27}) + det A(P5(Cs) \ {z7, 25} U {27, 29})
= (det A(Py))? - det A(Cy) + (det A(Cy))? + det A(Cs) - (det A(Py))3
=(=13-2+ (2P +2-(-1)°

=4.
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4.5 Generalized Wheel Graphs

In this section we find the determinant of generalized wheel graph such that

the definition following

Definition 4.5.1. Union of graphs G, and G; denote by G; |J G2 is graph G such that
V(G) = V(G,) UV (Gy) and E(G) = E(G1) U E(G»).

Definition 4.5.2. Sum of graphs G, and G, denote by Gy + G is a graph G such that
V(G) = V(G)) UV(G)) andE(G) = E(Gy) U E(Gs) U {v1v2/v; € V(G,) and v, €
V(Ga)}.

Example 4.5.3. Let Gy and Gy be graphs following,.

G Gy :

Then we get

GlUGZ: D G1+G2: @

Definition 4.5.4. Let m,n be positive integers such that m > land n > 3. Then

generalized wheel graph, denote by W,,(m), is a graph (C, U C. U U C,) +Ch.

m

Example 4.5.5. W,(2)
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In [1], Iyad T. Abu-Jecib found the determinant of the adjacency matrices
of the wheel graphs det(A(W,,)) by using the multiplication of their cigenvalucs. His

result is

2n  if n = 2(mod4)
det(A(Wn)) = ¢ 0 if n = 0(mod4)

—n  otherwise.

From result above and theorem 4.1.3, we can find the determinant of

W, (m) following.

Theorem 4.5.6. Let m > 2 and n > 3. Then

(m—2)(=4)™1'2n — (-4)"n  if n= 2(mod 4);
det A(W,,(m)) = 0 if n = 0(mod 4);
(m —2)(—n)(2)"' + (—n)2™  otherwise.

Proof. We can considering graph of W, (m) is a graph G in form following

So det A(Gy) = det A(C,,) det A(Gh) + (det A(C,))™ ! det A(W,,(m)). We can con-
sider following if n = 2(mod)4, then
det A(Gy) = (—4) det A(G)) + (—4)*™2n
= (—=4)""12n 4 (—4)[det A(C,,) det A(G3) + (det A(Cr))™ ! det A(W,))
(—4)™ 120 + (—4)"12n + 16 det A(G)
(—4)"12n 4 (—4)™12n + 16[(—4) det A(G3) + (—4)™32n]
(—4)"™12n + (—4)""12n + (—4)*[(—4) det A(G3) + (—4)™*2n]

I

I
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= (=4)" 120+ (—=4)™ 12n + (—4)"™"2n — 64 det A(G3)

= (m — 2)(—=4)" 2n + (—4)™ % det A(Gm-2)
= (m — 2)(=4)™12n — (—4)™216n
= (m — 2)(—4)""'2n — (—4)™n.
If n = (Omod4), then det A(C,,) = 0 so we sce that
det A(Gy) = det A(C,,) det A(G) + (det A(Cy,))™ ! det A(W,
= (0) det A(G1) + (0) det A(W,,(m))
= 0.
If n = (1,3 mod n), then
det A(Gy) = det A(C,,) det A(G,) + (det A(C,,))™ ! det A(W,,)
= (2) det A(Gy) + (2)™ ! det A(W,,)
— @2 det A(Cy) + (22 (~ )] + (—m)2n
= ddet A(Gy) + (=n)2m ! + (—n)(2)"!
= 4]2det A(Gy) + (=n)2™ 73] + (—n)(2)™"! + (—n)2m!
= (=n)2" ! + (—n)2m" ' + (—n)2™ ! + 8dct A(G3)

= (m — 2)(—n)(2)™ ' + 2™ 2 det A(Gin—2)
= (m — 2)(—n)(2)™ ! + (—n)2™.
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4.6 Cycle of Cycles

In this section we will try to compute the determinant of any necklace graph Cn(Cp).
To perform this, we will derive, step by step, any cycle from the necklace using Theorem

4.1.3. First, lct us illustrate our method by mcans of some examples. Consider C3(C3),

g Tg

C:s(C:i) :

we get
det A(C3(C3)) = det A(C3(Cs)\ {1, 25 }U{x1, T })+dct A(C3(C3)\{z1, 22 }U{x1, T3})

= (det A(Cy U Cy) - (det A(Py))?) + (det A(Py))* - det A(Cs)
+ det A(PQ(C‘j)) - det A(C.;)

= (2)(=1) + (=1)(2) + (=1)*(2) + 3)(2)

=-2-2-24+6=0.

Let us observe that the numbers we get for cycles of cycles may be different
from those given for paths of cycles. For instance, it follows from Theorem 4.4.1 that
det A(R;(C;,)) = 4 # 0 = det A(C3(Cy)). However, we can also show, in a similar way

as above, that det A(C3(Cs)) = 4 = det A(P5(Cs)).

C’:{(Cs) :
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Now, let us prove the main theorem of this section.
Theorem 4.6.1. Let n,m > 3. Then

(—4)™ if m = 2(mod4);
det A(Ch(Cr)) =4 4 if m = 1(mod4) and n is odd;
0 otherunse.

Proof. We apply Theorem 4.1.3 to derive, step by step, cycles Gy, from a given

necklace (see the picture below).

C1 n

Cy

Denote the above graph by Gy. At the first step(of our derivation) we get

})n— 1 Cm,

det A( C.n ) + det A(

Ot

and det A(G) = det A(C,y,) - det A(Py—1(Crm)) + det A(P,,_1) - det A(G4) where Gy
results from Gy by the derivation of one of the cycles Cp. If m is even, det A(P,,_1) =0
by Lemma 4.2.3 and hence det A(Gy) = 0 if m = 0(mod4) or det A(Gy) = (—4)™ if
m = 2(mod4), by Corollary 4.1.4 and Theorem 4.4.1. Thus, we can assume that m

is odd and hence det A(P—1) = (—1)_5‘_l and det A(Cp,) = 2. Then det A(Gy) =
2-det A(P,—1(Cy,)) + (—1)"%" - det A(G4) and we need to compute det A(G)).
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We continue the derivation of cycles and at the i — th step we get the following

graph, denote by G;

in which there are lacking ¢ — th copies of C,,. We also get

det A(Gi_y) = 2+ det A(Gi\z;) + (1) - det A(G))

In result, we obtain a sequence of graph Gy, Gy, ..., G, where Gy is the initial
necklace graph and G, is C,,. By the above formula we could compute det A(G)) if we

know det A(G;\z;). But using Corollary 3.6, we get

(=1)7 - det A(Paei(Cin)) if 4 is odd;
det A(Gi\z;) = i

(_1)1 - det A(Pm—l) -det A(Pn_i_] (Cm)) if 7 1is even.
This means (see Theorem 4.1) that

i—1

(D)7 (n—i+1) ifqis odd;
(=)™ (n—4) ifiis cven

Supposc that m = 1(mod4). Then we have

det A(G:\z;) =

det A(Giy) = (1)) .2 (n— 2. [—;—J + det A(G)))
and hence

det A(Gy) = 2n + det A(Gh)
=2n — 2(n — 2) + det A(G)
=2n—2(n —2) —2(n — 2) + det A(G53)

=2n—2(n—2)-2(n —2) + 2(mn—4)+ det A(G4)

n

=) (-nlzl. 2. (n-2. [%J)+dctA(Gn).
i=1

Thus, our theorem holds for m = 1(mod4) as G,, = C,(scc Corollary 3.4) and



: 0 if n = 0(mod4);
Z(——])[%J 2-(n=2-[5]) =< 4 if n=2(modd);

2 otherwise.
Hence det A(Gy) = 4 if n is odd, and det A(Gg) = 0 otherwise.
Suppose that m = 3(mod4). Our argumentation is similar as above.
det A(Gir) = (~)U) -2 (n—2- [ 2] ~ det A(G))

and hence

det A(Gp) = 2n — det A(Gh)
=2n — 2(n — 2) + det A(G2)
=2n — 2(n — 2) — 2(n — 2) — dct A(Gs)
= 2n — 2(n — 2) — 2(n — 2) + 2(n — 4) + det A(G4)

= DU 2 (=2 () (1) det A(G)

1=

1
which means that det A(Gy) = 0 as required. n

In contrast to paths of cycles, the determinant of the adjacency matrix of any
cycle of cycles depends on the way in which the cycles are joined into a cycle. The
above theorem concerns only necklace graphs and it is not true for arbitrary cycles of

cycles. For instance, we know that C3(Cj3) is singular whercas the following graph




which is a cycle, of the order 3, of Cjs is not singular. We have

det A(G) = det A(G\{z4, z8} U {24, To}) - det A(Py) + det A(P2(C3)) - det A(Cs)
= det A(G\{zs,z6} U {x5, 27} U {x4, 28} U {x4,20})
+ (det A(P,))? - det A(Cy) + det A(P2(C3)) - det A(Cs)
=0+24(3)(2)
= 8.
In the last line of the above calculation we refer to Theorem 4.1.2. It is

still open if one can define a feasible algorithm for solving the problem of singularity

of any cycle of cycles, c.g.



