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1. INTRODUCTION

We extend the classic Durbin’s algorithm and the classic Levinson’s algorithm
for symmetric Toeplitz matrices to skew-symmetric Toeplitz matrices. Levinson’s
algorithm is for solving the system Ax = b, where A is an n X n real symmetric
Toeplitz matrix (with some restrictions on A) and x and b are n x 1 vectors. In
our algorithms, we present an O(n?) method to solve HX = B, where H is a finite
n x n real skew-symmetric Toeplitz matrix (with some restrictions) and B is n x 2
(to solve Hx = b, where b is n x 1, simply let b be one of the colummns of B).
This method can be used to invert nonsingular skew-symmetric Toeplitz matrices.
Our algorithms are different than the algorithms presented in [?]. They are simple
and they use very similar techniques to those used by Durbin and Levinson. They
are easy to derive and easy to implement. They are also two-step. In addition, the
restrictions we place on the matrix of coefficients are less than the restrictions in
Durbin’s algorithm and in Levinson’s algorithm. Levinson’s algorithm and a two-
step version of it can be found in [?, ?, ?]. We recall here that well-known researchers
thought that the classic Durbin’s algorithm and the classic Levinson’s algorithm
can not be generalized to skew-symmetric Toeplitz matrices. But, we managed to
generalize them. Our algorithms were tested on skew-symmetric Toeplitz matrices
that appear in Sinc methods. They were tested on matrix S,, of L(fl)

I = [my]

, where
n
ij=1

1 k
where 7;; = €;—j, ep = 3 + sg, and s = / sinc(x)dx, where
0

sin(mx)
sinc(x) = { rr for x #0
1, for x = 0.

Thus, IT(L_D can be expressed in the form
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where [%} is the n X n matrix whose elements are all equal to % We tested the

algorithms also on matrix ItV of Sinc methods. I5" is an n x n skew-symmetric
Toeplitz matrix defined as follows

- 1 (71)71,—1 E
0 -1 P
71)n—2
1 0 -1 ( ";2 :
1 _1)yn—
17(11) = 2 0 n—3
(71)71 (71)71,71 (71571,—2 o )
L n—1 n—2 n—3 0 .

Many Sinc methods are dependent on Sinc matrices. For more about the matrices
of Sinc methods and about Sinc methods, see [?, 7, 2, 7, 2, 7].

2. PRELIMINARIES

We employ the following notation. We denote the transpose of a matrix A by
AT, As usual, Iy denotes the k x k identity matrix. When counting flops, we
treat addition/subtraction the same as multiplication/division. By the main coun-
terdiagonal (or simply counterdiagonal) of a square matrix we mean the positions
which proceed diagonally from the last entry in the first row to the first entry in
the last row.

Definition 2.1. The counteridentity matrix, denoted J, is the square matrix whose
elements are all equal to zero except those on the counterdiagonal, which are all
equal to 1.

We note that multiplying a matrix A by J from the left results in reversing the
rows of A and multiplying A by J from the right results in reversing the columns of
A. Throughout this paper, we will denote the k X k counteridentity matrix by Jj.
Note that multiplying a matrix or a vector by J does not contribute to the running
time.

Definition 2.2. A matrix A is skew-centrosymmetric if JAJ = —A, and Toeplitz
if the elements along each diagonal are equal.

Note that skew-symmetric Toeplitz matrices are skew-symmetric skew-centrosymrmetric.
Note also that if T, is an n x n skew-symmetric Toeplitz matrix, then 7, has the
following form

0 01 (o) oo Op—1

—01 0 g1 oo Op—2

Tn — —02 —01 0 . Op_3
—Op-1 —On_9 —0Op_3 ... 0

The above form is the form we will refer to in the next section. Note that the
first row (excluding the first element) generates (determines) T),, i.e. the vector
hp = [01,09, -+ ,0n_1]T is a generator of T,,. We will assume that {T,}, n € 2ZF,
is a family of real skew-symmetric Toeplitz matrices. Note that to solve T,,X =
B, where T, is n x n and B is n X 2, we need T, 12. To be specific, we need
only the elements o,, and 0,1 from the generator h, o of T, 1o. This is not a
shortcome of the algorithm because most of the skew-symmetric Toeplitz matrices
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that arise in applications are of the form we mentioned above (i.e. they appear as
classes/sequences of matrices) as it is the case with the skew-symmetric Toeplitz
matrices that appear in Sinc methods. For example, in matrix .S,, of I,(fl) described
in the introduction, o) = f(;k sinc(x)dx, and in matrix L(ll), o = % Thus, ok
is defined for all k € Z*. Also, we recall that Durbin and Levinson used similar
teqchniques in their algorithms; i.e., to solve H,x = b, where H,, is an n X n real
symmetric Toeplitz matrix, they use H, ;.

Definition 2.3. Let A be an n X n matrix. The leading principal matriz of A of
order k is the matrix formed from A by deleting the last n — k columns and the
last n — k rows of A.

3. ALGORITHMS FOR SKEW-SYMMETRIC TOEPLITZ MATRICES

Throughout the rest of the paper, let £ be even, and let Ty be a k x k real
skew-symmetric Toeplitz matrix and assume T;, Vi € {2,3,--- ,k} N 2Z, is non-
singular (i.e. all leading principal matrices of T} of even order are nonsingular).
We recall that Durbin and Levinson have stronger restrictions in their algorithms.
We note also that it happens sometimes that all even-order matrices of a family
of skew-symmetric Toeplitz matrices are non-singular as it is the case with matrix
S, of Iy(fl) and matrix L(Ll). For the proofs, see [?, ?]. Note that odd-order skew-
symmetric (and odd-order skew-centrosymmetric matrices) are singular, and hence,
it is essential to have a two-step algorithm that skips the odd-order matrices. Thus,
our algorithm is a two-step algorithm because it moves from order k to order k + 2
instead of moving from order k to order k + 1. Now note that Ty4o can be written
as

Ty = T Jr Ry,
c+2 _RZ‘Jk T2 9
o1 g2
02 03
where Ry = . . . Once again, in each step we will move from T}, to Ty
Ok Ok+1

instead of Tyy1. We start with T5. Now, we extend Durbin’s algorithm. If we know
the solution of 7Y = Ry, where Y is k x 2, then we can know the solution of

Tk JkRk- Z _ Rk
~RLJy  T» WSk

where Z is k x 2, Wis 2 x 2, and S, = Tkt1  Ok+2 . Note that T and J; are
Ok+2 Ok+3

k x k, Ry and Z are k x 2, and T» and Sy are 2 x 2. Now note that
TwZ 4+ JyReW = Ry, and — RL JpZ + ToW = Sj,.

Thus, Z =Y + JpYW and W = (To — RLY)71(S. + RL JY). Note that T — RIY
is nonsingular, because

T 0
H{ Ty Hy = { g ] :

YT LT, — Rka T — R%Y
where

Hk:{lk JkY].

0 I
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(Note that TypJpY + JyRy = 0 and YT, T JiY + YTR, = 0 also.) Hence,
det(Tj42) = det(Ty) - det(T2 — R{Y). Now since we are assuming Tjo is non-
singular, then T» — RLY is nonsingular. Thus, our O(n?) algorithm is (we note
that the inverse we have to find in this algorithm and in all other algorithms is for
a 2 x 2 matrix):

Algorithm 1:

Input: n (an even positive integer), o0 = [01 02 -+ ony1]? (a generator of a
real skew-symmetric Toeplitz matrix T}, 42).

o 70’2/0’1 70’3/0’1
Y2 o |: 1 02/01 :|
0 g1

ne[ 5 %]

fork=2,--- n—2 step 2
Let J be the counteridentity matrix of order k.

o1 02
g9 g3
Ry =
Ok  Ok+41
o o
Sy = k+1 k+2
Ok+2 Ok+3

P, = (T2 — Rzyk)_l
Wy = Pk(Sk + RngYk)
Zy =Y + Y Wy

Yio = g/];
end for
Output: Y, (the solution of T,,Y,, = R,, where T,, is the skew-symmetric
Toeplitz matrix whose generator is [0 02 - Un_1]T and R, is as before).

It is easy to see that the running time of the previous algorithm is ZZ;S 24k =
6n? + O(n).

Remark: We remind the reader that we define a flop to be one addition or one
multiplication, while some people define it to be one addition and one multiplication.
If we define the flop to be one addition and one multiplication, then the running
time of the previous algorithm will be almost half of the running time we have
above.

bl C1
b2 Co

Now we derive a Levinson-type algorithm. Let B = .. |. Assume we
bk Ck

have the solution of T, X = B, where X is k£ X 2, and assume also we have the
solution (from the previous algorithm) of T,Y = Ry, where Y is k x 2. Now, we
want to solve the next even higher order equation:
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where Vis k x2, M and C are 2 x 2, and C = [ brt1 i ] . Then, we will have
bet2  Cri2

T.V + JuRM = B, —RLJ,V + ToM = C.

Thus, V = X + JyYM and M = (T — RLY) ' (C + R} J;X). Now, all we need
to do is to execute the steps above in parallel with the steps for solving T1Y = Ry.
Therefore, our O(n?) algorithm is:

Algorithm 2 (Classic Levinson-Type Algorithm):

Input: n (an even positive integer), b = [by by -+ b7, c=[c1 ca -+ c,]T (b
and c are the vectors of constant terms), o = [0 02 -+ 0,41]7 (a generator of a
real skew-symmetric Toeplitz matrix T}, 42).

o 702/01 703/0’1

Y2 o |: 1 02/01

_ 0 g1
el %
—b2/0'1 —02/(71 1
X, —
2 [51/01 c1/o1

fork=2,--- n—2 step 2
Let Ji be the counteridentity matrix of order k.

g1 g9

() g3
Ry =

Ok  Ok+1

S, — |: Ok+1 Ok42
b=

Ok+2 Ok+3
P = (T — Ry"Y}) ™
Wy = Pk(Sk + R{JkYk)
Zy =Y+ Y Wy
M, = Pk(C’k + R{JkX}C)
Vie = X + Jp Y My,

Z
Yiqo = VVIZ
Vi
Xpy2 = { Mkk }
end for
Output: X, (the solution of T,X,, = B,, where B, = [b,c] and T, is the
skew-symmetric Toeplitz matrix whose generator is [o01 09 -+ 0,-1]7).

It is easy to see that the running time of the previous algorithm is ZZ;S 40k =
10n? + O(n). Note that our algorithm solves for two vectors of constant terms at
once. Le. if we want to solve T,z = b and T,y = ¢, where b and ¢ are n X 1 and
n is even, then we solve the system 7,,Z = D, where D is an n X 2 matrix whose
first column is b and second column is ¢. Then, = will be the first column of Z and
y the second column. Solving T},Z = D by our method costs 10n? + O(n). Thus,
obtaining = costs 5n% + O(n) and obtaining y has the same cost.

4. EXAMPLES

In the following example we solve (calculations are done by Octave which is a
math-oriented programming language similar to MATLAB) SgX = D, where Sg is
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the 6 x 6 matrix of (-1 mentioned in the introduction, i.e.

0.00000 —0.58949 —0.45141 —0.53309 —0.47497 —0.52011
0.58949  0.00000 —0.58949 —0.45141 —0.53309 —0.47497
0.45141 0.58949  0.00000 —0.58949 —0.45141 —0.53309
0.53309  0.45141 0.58949  0.00000 —0.58949 —0.45141 |’
0.47497  0.53309  0.45141 0.58949  0.00000 —0.58949
0.52011 0.47497  0.53309  0.45141 0.58949 0.00000

Se

1 -3

2 =7

3 6
D= 4 4 |7

5 -8

6 2

and the generator o of Sg is [-0.58949 — 0.45141 — 0.53309 — 0.47497 — 0.52011 — 0.48321 — 0.51442]T.
Note that the inputs to the algorithm are 6, b, ¢, and o, where b is the first column
of D and c is the second column of D.

Initializations:
v, — | —0-76577  —0.90433
27| 1.00000  0.76577
7, — [ 0.00000 —0.58049
271 0.58949  0.00000
x| 33928 —11.8747
271 —-1.6964 5.0891
Tterations:
k = 2:
R, — | —0-58949 —0.45141
27| —0.45141 —0.53309
g, _ [ —0-53309 —0.47497
27| —0.47497 —0.52011

[ —3.0088¢ — 17 1.2872¢ + 00 }
P, =

—1.2872e + 00 9.1969e — 17

W — | 066695  —0.49387
27| 1.00000  0.66695

7, | —0.66695 —0.88747
27| 0.60640  0.54082

3.8063  10.3397 }

M, = [ ~3.1773  —10.7611

Vo [ 47659 —9.7754
27| —1.7378  6.9029
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—0.66695
0.60640
—0.66695
1.00000

4.7659
—1.7378
3.8063
—3.1773

Yy =

Xy =

[ —0.58949
—0.45141
~0.53309

| —0.47497

[ —0.52011
| —0.48321

5
6

Ry =

|

|

—0.63828
1.00000

—0.63828
0.53823
—0.51318
0.53823

4.6033
—4.6840

6.2453
—2.4946
4.0645
—2.0906

—0.63828
0.53823
—0.51318
0.53823
—0.63828
1.00000

6.2453
—2.4946
4.0645
—2.0906
4.6033
—4.6840

wi= |
Zy =
M= |

‘/4:

}/6:

X =

—0.88747
0.54082
—0.49387
0.66695

—9.7754
6.9029
10.3397
—10.7611

—0.45141
—0.53309
—0.47497
—0.52011

—0.48321
—0.51442

i

2

0.63828

—0.88814
0.50995
—0.40723
0.38486

3.8665
6.5775

—1.5221
1.0757
16.2416
—19.1772

—0.88814
0.50995
—0.40723
0.38486
—0.42637
0.63828

—1.5221
1.0757
16.2416
—19.1772
3.8665
6.5775

|

|
|
|

—1.1544e — 16 1.2270e + 00
—1.2270e + 00 8.3570e — 17

—0.42637

|
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End of Iterations
The solution X is

6.2453  —1.5221
—2.4946  1.0757
4.0645 16.2416
—2.0906 —19.1772
4.6033 3.8665
—4.6840  6.5775

We note that the solution above is exactly the same as the solution obtained
from solving the system using Maple. The two solutions even match for a much

higher number of decimal places.

As another example, we solve the system Iél)X = D, where D is an 8 X 2 matrix

whose first solumn is the 8 x 1 zero vector (call this vector b) and whose second

column is ¢ = Iél)

digits)

e, where e is the 8 x 1 vector of ones; i.e. (rounded up to 16

[ —0.759523809523809
0.383333333333333
—0.283333333333333
0.250000000000000
—0.250000000000000
0.283333333333333
—0.383333333333333
0.759523809523809

Note that D was chosen so that the true solution is the matrix whose first column
is the 8 x 1 zero vector and whose second column is the 8 x 1 vector of ones. Solving
the system by our algorithm with input 8, b, ¢, and o, where

-1
1/2
-1/3
1/4
c=| -1/5 |,
1/6
-1/7
1/8
=y

gives us the solution

[ 0.000000000000000 1.000000000000000
0.000000000000000  1.000000000000000
0.000000000000000  1.000000000000000
0.000000000000000  1.000000000000000
0.000000000000000  1.000000000000000
0.000000000000000  1.000000000000000
0.000000000000000  1.000000000000000

| 0.000000000000000 1.000000000000000
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5. IMPROVED ALGORITHMS

First, we present a 4n®+O(n) Durbin-type algorithm. The idea here is to reduce
the cost of computing R} Vj. Here we will use the same notation (but we will replace
Y by Yk, Z by Zi, and W by Wy,) we used when we derived the first two algorithms.
Now consider

Z—
RTY _ RT ST k—2 )
k1k [ k—2 k-2 ] Wi_s

But, Zy_2 = Yo + Jp_2Yr_oWj_o. Thus,
RIY, = RL Vi o+ (To — RF Y o)W7 .

Therefore, we can use the previously computed values of W and RTY to compute
the new value of RTY which we will call E.
Algorithm 3 (Classic Durbin-Type Algorithm):
Input: n (an even positive integer), o = [01 02 -+ opy1]? (a generator of a
real skew-symmetric Toeplitz matrix T},42).
Y2: |: 702/01 703/0’1 :|
1 02/01

o 0 g1
nel %]
e

02 O3
E=R}Y,

0 0
W= 0 0

fork=2--- n—2 step 2
Let Ji be the counteridentity matrix of order k.

01 02
g9 g3
Ry, =
Ok Ok+1
o o
S = k+1 k+2
Ok+2 Ok+3

E=E+ (T, — E)W?
P, = (TQ — E)il

W = Py(Sk + RTJ,Y:)
Zy =Y + J YL W

iy

end for

Output: Y, (the solution of T,,Y,, = R,, where T, is the skew-symmetric
Toeplitz matrix whose generator is [0 02 -+ 0,_1]7 and R, is as before).

It is easy to see that the running time of the previous algorithm is Z’,:;; 16k =
4n? 4+ O(n).

Algorithm 4 (Improved Classic Levinson-Type Algorithm):

Input: n (an even positive integer), b = [by by -+ b,|T, c=[c1 ca -+ c,]T (b
and c are the vectors of constant terms), o = [0 02 -+ 0,41]7 (a generator of a

real skew-symmetric Toeplitz matrix T},42).



CLASSIC TWO-STEP DURBIN-TYPE AND LEVINSON-TYPE ALGORITHMS FOR SKEW-SYMMETRIC TOEPLITZ MATRIC

Y, — —02/01 —03/01 ]
2= 1 0'2/0'1

. O g1
ne % %]

X, = [ —b2/01 —02/01 ]

N b1/01 01/01
welo ]
092 O3
E=R}Y,
0 0
W= 0 0

fork=2,--- n—2 step 2
Let Ji be the counteridentity matrix of order k.

01 02
02 g3
Ry =
Ok  Ok+1
o o
S, = k+1 k+2
Ok+2 Ok+3

E:E+(T2—E)W2
P, = (TQ — E)il
=Y, + LY, W

My, = Pi(Cy + RE Ji Xk)
Vi = X + Jp Y My

| %k
Yivz = |
Vi
Xppyo = { M, }
end for
Output: X, (the solution of T,X,, = B, where B, = [b,c] and T, is the
skew-symmetric Toeplitz matrix whose generator is [0 0g +++ 0p_1]7).

It is easy to see that the running time of the previous algorithm is ZZ;S 32k =
8n% 4+ O(n). Note that our algorithm solves for two vectors of constant terms at
once. Le. if we want to solve T,z = b and T,,y = ¢, where b and ¢ are n X 1 and
n is even, then we solve the system 7,72 = D, where D is an n X 2 matrix whose
first column is b and second column is ¢. Then, = will be the first column of Z and
y the second column. Solving T,,Z = D by our method costs 8n? + O(n). Thus,
obtaining x costs 4n? + O(n) and obtaining y has the same cost.

Solving the first system we solved in Section ?? by the improved Levinson algo-
rithm (using Octave) gives the same solution we got in that section. All variables
we get here are the same as those in that example except that we do not have Wy
here, and we have the following additional ones.

In the initializations part, we have

—0.58949 —0.45141

B2 =1 45141 —0.53300
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o —5.5511e — 17 1.8742e¢ — 01
| —1.8742¢ — 01 1.8160e — 17
0 0
v[33]
When k = 2 in the iterations, we get

Jo —5.5011le — 17 1.8742e — 01
T | —1.8742¢ —01 1.8160e — 17
W= —0.66695 —0.49387
N 1.00000 0.66695

When k = 4 in the iterations, we get

E— —5.8234e — 17 2.2553e — 01
| —2.2553e — 01 1.5619e — 17

W= —0.63828 —0.42637
- 1.00000 0.63828

6. AN OCTAVE PROGRAM FOR THE IMPROVED LEVINSON-TYPE ALGORITHM

We note that we do not have to compute the counteridentity matrix, J, in the
program below. We can write the program without it. We included it in the
program for the sake of clarity. We note also that the program can be shortened
if we use Octave’s built-in functions and operators. But, we decided to write it as
above to make it easy to understand for readers who do not know Octave.

#

1;

function J = Counter(n)

# usage: J = Counter(n)

# description: Creates the counteridentity matrix of order n.

J=zeros(n);

for i=1:n

J(i,n-i+1)=1;

endfor;

endfunction

function Z = solve(sigma,D)

# description : Solves the system T,,Z = D, where n is even and

# T, is a real skew-symmetric Toeplitz matrix generated by

# [sigma(1) sigma(2) --- sigma(n —1)]T.

# The input sigma = [sigma(1) sigma(2) --- sigma(n + 1)]T

# is the generator of T),4o. It is an (n + 1) X 1 column vector.

# The input D is an n X 2 matrix (matrix of constant terms).

# usage: Z — solve(sigma,D)

n = rows(sigma)- 1;

b = D(:,1); # b is the first column of D.

¢ = D(:,2); # c is the second column of D.

Y = [-sigma(2)/sigma(1),-sigma(3) /sigma(1);1,sigma(2) /sigma(1)];

T2 = [0,sigma(1);-sigma(1),0];
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X = [-b(2) /sigma(1),-c(2) /sigma(1);b(1)/sigma(1),c(1) /sigma(1)];
R = [sigma(1),sigma(2);sigma(2),sigma(3)];
E = R’ *Y; # The prime is used in Octave for transpose.
W = zeros(2,2); # W is the 2 x 2 zero matrix.
for k = 2:n-2
if (rem(k, 2) !=0)
continue;
endif;
R = zeros(k,2);
for i=1:k
R(i,1)=sigma(i);
R(i,2) = sigma(i+1);
endfor;
S = zeros(2,2);

[l
Q

mO

o

=
ot

D

=
~~
-
g

+ (T2-E) *W*W;
inv(T2 - E);
=P*(S+ R *J*Y);
Y L IEY < W,

P (C+ R * J* X);
X

M <ZNZgOH
I I

=N

=

endfor;
7 =X,
endfunction;
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