
CLASSIC TWO-STEP DURBIN-TYPE AND LEVINSON-TYPE
ALGORITHMS FOR SKEW-SYMMETRIC TOEPLITZ MATRICES

IYAD T. ABU-JEIB

Abstract. We present e�cient classic two-step Durbin-type and Levinson-
type algorithms for even order skew-symmetric Toeplitz matrices.

AMS classi�cations: 65F05, 15A57
Keywords: skew-symmetric Toeplitz matrix; Levinson algorithm; Durbin algo-

rithm; skew-centrosymmetric

1. Introduction
We extend the classic Durbin's algorithm and the classic Levinson's algorithm

for symmetric Toeplitz matrices to skew-symmetric Toeplitz matrices. Levinson's
algorithm is for solving the system Ax = b, where A is an n × n real symmetric
Toeplitz matrix (with some restrictions on A) and x and b are n × 1 vectors. In
our algorithms, we present an O(n2) method to solve HX = B, where H is a �nite
n× n real skew-symmetric Toeplitz matrix (with some restrictions) and B is n× 2
(to solve Hx = b, where b is n × 1, simply let b be one of the colummns of B).
This method can be used to invert nonsingular skew-symmetric Toeplitz matrices.
Our algorithms are di�erent than the algorithms presented in [?]. They are simple
and they use very similar techniques to those used by Durbin and Levinson. They
are easy to derive and easy to implement. They are also two-step. In addition, the
restrictions we place on the matrix of coe�cients are less than the restrictions in
Durbin's algorithm and in Levinson's algorithm. Levinson's algorithm and a two-
step version of it can be found in [?, ?, ?]. We recall here that well-known researchers
thought that the classic Durbin's algorithm and the classic Levinson's algorithm
can not be generalized to skew-symmetric Toeplitz matrices. But, we managed to
generalize them. Our algorithms were tested on skew-symmetric Toeplitz matrices
that appear in Sinc methods. They were tested on matrix Sn of I

(−1)
n , where

I(−1)
n = [ηij]

n
i,j=1

where ηij = ei−j , ek =
1
2

+ sk, and sk =
∫ k

0

sinc(x)dx, where

sinc(x) =

{ sin(πx)
πx

,

1, for x = 0.
for x 6= 0

Thus, I
(−1)
n can be expressed in the form

I(−1)
n =

[
1
2

]
+ Sn,

1

CLASSIC TWO-STEP DURBIN-TYPE AND LEVINSON-TYPE ALGORITHMS FOR SKEW-SYMMETRIC TOEPLITZ MATRICES2

where
[
1
2

]
is the n × n matrix whose elements are all equal to 1

2 . We tested the
algorithms also on matrix I

(1)
n of Sinc methods. I

(1)
n is an n × n skew-symmetric

Toeplitz matrix de�ned as follows

I(1)
n =




0 −1 1
2 ... (−1)n−1

n−1

1 0 −1 ... (−1)n−2

n−2

− 1
2 1 0 ... (−1)n−3

n−3
...

...
... ...

...
(−1)n

n−1
(−1)n−1

n−2
(−1)n−2

n−3 ... 0




.

Many Sinc methods are dependent on Sinc matrices. For more about the matrices
of Sinc methods and about Sinc methods, see [?, ?, ?, ?, ?, ?].

2. Preliminaries
We employ the following notation. We denote the transpose of a matrix A by

AT . As usual, Ik denotes the k × k identity matrix. When counting �ops, we
treat addition/subtraction the same as multiplication/division. By the main coun-
terdiagonal (or simply counterdiagonal) of a square matrix we mean the positions
which proceed diagonally from the last entry in the �rst row to the �rst entry in
the last row.
De�nition 2.1. The counteridentity matrix, denoted J , is the square matrix whose
elements are all equal to zero except those on the counterdiagonal, which are all
equal to 1.

We note that multiplying a matrix A by J from the left results in reversing the
rows of A and multiplying A by J from the right results in reversing the columns of
A. Throughout this paper, we will denote the k × k counteridentity matrix by Jk.
Note that multiplying a matrix or a vector by J does not contribute to the running
time.
De�nition 2.2. A matrix A is skew-centrosymmetric if JAJ = −A, and Toeplitz
if the elements along each diagonal are equal.

Note that skew-symmetric Toeplitz matrices are skew-symmetric skew-centrosymmetric.
Note also that if Tn is an n × n skew-symmetric Toeplitz matrix, then Tn has the
following form

Tn =




0 σ1 σ2 ... σn−1

−σ1 0 σ1 ... σn−2

−σ2 −σ1 0 ... σn−3

...
...

... ...
...

−σn−1 −σn−2 −σn−3 ... 0




.

The above form is the form we will refer to in the next section. Note that the
�rst row (excluding the �rst element) generates (determines) Tn, i.e. the vector
hn = [σ1, σ2, · · · , σn−1]T is a generator of Tn. We will assume that {Tn}, n ∈ 2Z+,
is a family of real skew-symmetric Toeplitz matrices. Note that to solve TnX =
B, where Tn is n × n and B is n × 2, we need Tn+2. To be speci�c, we need
only the elements σn and σn+1 from the generator hn+2 of Tn+2. This is not a
shortcome of the algorithm because most of the skew-symmetric Toeplitz matrices

CLASSIC TWO-STEP DURBIN-TYPE AND LEVINSON-TYPE ALGORITHMS FOR SKEW-SYMMETRIC TOEPLITZ MATRICES3

that arise in applications are of the form we mentioned above (i.e. they appear as
classes/sequences of matrices) as it is the case with the skew-symmetric Toeplitz
matrices that appear in Sinc methods. For example, in matrix Sn of I

(−1)
n described

in the introduction, σk =
∫ −k

0
sinc(x)dx, and in matrix I

(1)
n , σk = (−1)k

k . Thus, σk

is de�ned for all k ∈ Z+. Also, we recall that Durbin and Levinson used similar
teqchniques in their algorithms; i.e., to solve Hnx = b, where Hn is an n × n real
symmetric Toeplitz matrix, they use Hn+1.
De�nition 2.3. Let A be an n × n matrix. The leading principal matrix of A of
order k is the matrix formed from A by deleting the last n − k columns and the
last n− k rows of A.

3. Algorithms for Skew-Symmetric Toeplitz Matrices
Throughout the rest of the paper, let k be even, and let Tk be a k × k real

skew-symmetric Toeplitz matrix and assume Ti, ∀i ∈ {2, 3, · · · , k} ∩ 2Z, is non-
singular (i.e. all leading principal matrices of Tk of even order are nonsingular).
We recall that Durbin and Levinson have stronger restrictions in their algorithms.
We note also that it happens sometimes that all even-order matrices of a family
of skew-symmetric Toeplitz matrices are non-singular as it is the case with matrix
Sn of I

(−1)
n and matrix I

(1)
n . For the proofs, see [?, ?]. Note that odd-order skew-

symmetric (and odd-order skew-centrosymmetric matrices) are singular, and hence,
it is essential to have a two-step algorithm that skips the odd-order matrices. Thus,
our algorithm is a two-step algorithm because it moves from order k to order k + 2
instead of moving from order k to order k + 1. Now note that Tk+2 can be written
as

Tk+2 =
[

Tk JkRk

−RT
k Jk T2

]
,

where Rk =




σ1 σ2

σ2 σ3

...
...

σk σk+1


. Once again, in each step we will move from Tk to Tk+2

instead of Tk+1. We start with T2. Now, we extend Durbin's algorithm. If we know
the solution of TkY = Rk, where Y is k × 2, then we can know the solution of[

Tk JkRk

−RT
k Jk T2

] [
Z
W

]
=

[
Rk

Sk

]
,

where Z is k × 2, W is 2× 2, and Sk =
[

σk+1 σk+2

σk+2 σk+3

]
. Note that Tk and Jk are

k × k, Rk and Z are k × 2, and T2 and Sk are 2× 2. Now note that
TkZ + JkRkW = Rk, and −RT

k JkZ + T2W = Sk.

Thus, Z = Y +JkY W and W = (T2−RT
k Y)−1(Sk +RT

k JkY). Note that T2−RT
k Y

is nonsingular, because

HT
k Tk+2Hk =

[
Tk 0

Y T JkTk −RT
k Jk T2 −RT

k Y

]
,

where
Hk =

[
Ik JkY
0 I2

]
.

CLASSIC TWO-STEP DURBIN-TYPE AND LEVINSON-TYPE ALGORITHMS FOR SKEW-SYMMETRIC TOEPLITZ MATRICES4

(Note that TkJkY + JkRk = 0 and Y T JkTkJkY + Y T Rk = 0 also.) Hence,
det(Tk+2) = det(Tk) · det(T2 − RT

k Y). Now since we are assuming Tk+2 is non-
singular, then T2 − RT

k Y is nonsingular. Thus, our O(n2) algorithm is (we note
that the inverse we have to �nd in this algorithm and in all other algorithms is for
a 2× 2 matrix):

Algorithm 1:
Input: n (an even positive integer), σ = [σ1 σ2 · · · σn+1]T (a generator of a

real skew-symmetric Toeplitz matrix Tn+2).
Y2 =

[−σ2/σ1 −σ3/σ1

1 σ2/σ1

]

T2 =
[

0 σ1

−σ1 0

]

for k = 2, · · · , n− 2, step 2
Let Jk be the counteridentity matrix of order k.

Rk =




σ1 σ2

σ2 σ3

...
...

σk σk+1




Sk =
[

σk+1 σk+2

σk+2 σk+3

]

Pk = (T2 −RT
k Yk)−1

Wk = Pk(Sk + RT
k JkYk)

Zk = Yk + JkYkWk

Yk+2 =
[

Zk

Wk

]

end for
Output: Yn (the solution of TnYn = Rn, where Tn is the skew-symmetric

Toeplitz matrix whose generator is [σ1 σ2 · · · σn−1]T and Rn is as before).
It is easy to see that the running time of the previous algorithm is

∑n−2
k=2 24k =

6n2 + O(n).
Remark: We remind the reader that we de�ne a �op to be one addition or one

multiplication, while some people de�ne it to be one addition and one multiplication.
If we de�ne the �op to be one addition and one multiplication, then the running
time of the previous algorithm will be almost half of the running time we have
above.

Now we derive a Levinson-type algorithm. Let B =




b1 c1

b2 c2

...
...

bk ck


. Assume we

have the solution of TkX = B, where X is k × 2, and assume also we have the
solution (from the previous algorithm) of TkY = Rk, where Y is k × 2. Now, we
want to solve the next even higher order equation:

[
Tk JkRk

−RT
k Jk T2

] [
V
M

]
=

[
B
C

]
,

CLASSIC TWO-STEP DURBIN-TYPE AND LEVINSON-TYPE ALGORITHMS FOR SKEW-SYMMETRIC TOEPLITZ MATRICES5

where V is k×2, M and C are 2×2, and C =
[

bk+1 ck+1

bk+2 ck+2

]
. Then, we will have

TkV + JkRkM = B, −RT
k JkV + T2M = C.

Thus, V = X + JkY M and M = (T2 − RT
k Y)−1(C + RT

k JkX). Now, all we need
to do is to execute the steps above in parallel with the steps for solving TkY = Rk.
Therefore, our O(n2) algorithm is:

Algorithm 2 (Classic Levinson-Type Algorithm):
Input: n (an even positive integer), b = [b1 b2 · · · bn]T , c = [c1 c2 · · · cn]T (b

and c are the vectors of constant terms), σ = [σ1 σ2 · · · σn+1]T (a generator of a
real skew-symmetric Toeplitz matrix Tn+2).

Y2 =
[−σ2/σ1 −σ3/σ1

1 σ2/σ1

]

T2 =
[

0 σ1

−σ1 0

]

X2 =
[−b2/σ1 −c2/σ1

b1/σ1 c1/σ1

]

for k = 2, · · · , n− 2, step 2
Let Jk be the counteridentity matrix of order k.

Rk =




σ1 σ2

σ2 σ3

...
...

σk σk+1




Sk =
[

σk+1 σk+2

σk+2 σk+3

]

Pk = (T2 −Rk
T Yk)−1

Wk = Pk(Sk + RT
k JkYk)

Zk = Yk + JkYkWk

Mk = Pk(Ck + RT
k JkXk)

Vk = Xk + JkYkMk

Yk+2 =
[

Zk

Wk

]

Xk+2 =
[

Vk

Mk

]

end for
Output: Xn (the solution of TnXn = Bn, where Bn = [b, c] and Tn is the

skew-symmetric Toeplitz matrix whose generator is [σ1 σ2 · · · σn−1]T).
It is easy to see that the running time of the previous algorithm is

∑n−2
k=2 40k =

10n2 + O(n). Note that our algorithm solves for two vectors of constant terms at
once. I.e. if we want to solve Tnx = b and Tny = c, where b and c are n × 1 and
n is even, then we solve the system TnZ = D, where D is an n × 2 matrix whose
�rst column is b and second column is c. Then, x will be the �rst column of Z and
y the second column. Solving TnZ = D by our method costs 10n2 + O(n). Thus,
obtaining x costs 5n2 + O(n) and obtaining y has the same cost.

4. Examples
In the following example we solve (calculations are done by Octave which is a

math-oriented programming language similar to MATLAB) S6X = D, where S6 is

CLASSIC TWO-STEP DURBIN-TYPE AND LEVINSON-TYPE ALGORITHMS FOR SKEW-SYMMETRIC TOEPLITZ MATRICES6

the 6× 6 matrix of I(−1) mentioned in the introduction, i.e.

S6 =




0.00000 −0.58949 −0.45141 −0.53309 −0.47497 −0.52011
0.58949 0.00000 −0.58949 −0.45141 −0.53309 −0.47497
0.45141 0.58949 0.00000 −0.58949 −0.45141 −0.53309
0.53309 0.45141 0.58949 0.00000 −0.58949 −0.45141
0.47497 0.53309 0.45141 0.58949 0.00000 −0.58949
0.52011 0.47497 0.53309 0.45141 0.58949 0.00000




,

D =




1 −3
2 −7
3 6
4 4
5 −8
6 2




,

and the generator σ of S8 is [−0.58949 − 0.45141 − 0.53309 − 0.47497 − 0.52011 − 0.48321 − 0.51442]T .
Note that the inputs to the algorithm are 6, b, c, and σ, where b is the �rst column
of D and c is the second column of D.

Initializations:

Y2 =
[−0.76577 −0.90433

1.00000 0.76577

]

T2 =
[

0.00000 −0.58949
0.58949 0.00000

]

X2 =
[

3.3928 −11.8747
−1.6964 5.0891

]

Iterations:
k = 2:

R2 =
[−0.58949 −0.45141
−0.45141 −0.53309

]

S2 =
[−0.53309 −0.47497
−0.47497 −0.52011

]

C2 =
[

3 6
4 4

]

P2 =
[−3.0088e− 17 1.2872e + 00
−1.2872e + 00 9.1969e− 17

]

W2 =
[−0.66695 −0.49387

1.00000 0.66695

]

Z2 =
[−0.66695 −0.88747

0.60640 0.54082

]

M2 =
[

3.8063 10.3397
−3.1773 −10.7611

]

V2 =
[

4.7659 −9.7754
−1.7378 6.9029

]

CLASSIC TWO-STEP DURBIN-TYPE AND LEVINSON-TYPE ALGORITHMS FOR SKEW-SYMMETRIC TOEPLITZ MATRICES7

Y4 =




−0.66695 −0.88747
0.60640 0.54082
−0.66695 −0.49387
1.00000 0.66695




X4 =




4.7659 −9.7754
−1.7378 6.9029
3.8063 10.3397
−3.1773 −10.7611




k = 4:

R4 =




−0.58949 −0.45141
−0.45141 −0.53309
−0.53309 −0.47497
−0.47497 −0.52011




S4 =
[−0.52011 −0.48321
−0.48321 −0.51442

]

C4 =
[

5 −8
6 2

]

P4 =
[−1.1544e− 16 1.2270e + 00
−1.2270e + 00 8.3570e− 17

]

W4 =
[−0.63828 −0.42637

1.00000 0.63828

]

Z4 =




−0.63828 −0.88814
0.53823 0.50995
−0.51318 −0.40723
0.53823 0.38486




M4 =
[

4.6033 3.8665
−4.6840 6.5775

]

V4 =




6.2453 −1.5221
−2.4946 1.0757
4.0645 16.2416
−2.0906 −19.1772




Y6 =




−0.63828 −0.88814
0.53823 0.50995
−0.51318 −0.40723
0.53823 0.38486
−0.63828 −0.42637
1.00000 0.63828




X6 =




6.2453 −1.5221
−2.4946 1.0757
4.0645 16.2416
−2.0906 −19.1772
4.6033 3.8665
−4.6840 6.5775




CLASSIC TWO-STEP DURBIN-TYPE AND LEVINSON-TYPE ALGORITHMS FOR SKEW-SYMMETRIC TOEPLITZ MATRICES8

End of Iterations
The solution X is 



6.2453 −1.5221
−2.4946 1.0757
4.0645 16.2416
−2.0906 −19.1772
4.6033 3.8665
−4.6840 6.5775




.

We note that the solution above is exactly the same as the solution obtained
from solving the system using Maple. The two solutions even match for a much
higher number of decimal places.

As another example, we solve the system I
(1)
8 X = D, where D is an 8×2 matrix

whose �rst solumn is the 8 × 1 zero vector (call this vector b) and whose second
column is c = I

(1)
8 e, where e is the 8 × 1 vector of ones; i.e. (rounded up to 16

digits)

c =




−0.759523809523809
0.383333333333333
−0.283333333333333
0.250000000000000
−0.250000000000000
0.283333333333333
−0.383333333333333
0.759523809523809




.

Note that D was chosen so that the true solution is the matrix whose �rst column
is the 8×1 zero vector and whose second column is the 8×1 vector of ones. Solving
the system by our algorithm with input 8, b, c, and σ, where

σ =




−1
1/2
−1/3
1/4
−1/5
1/6
−1/7
1/8
−1/9




,

gives us the solution



0.000000000000000 1.000000000000000
0.000000000000000 1.000000000000000
0.000000000000000 1.000000000000000
0.000000000000000 1.000000000000000
0.000000000000000 1.000000000000000
0.000000000000000 1.000000000000000
0.000000000000000 1.000000000000000
0.000000000000000 1.000000000000000




.

CLASSIC TWO-STEP DURBIN-TYPE AND LEVINSON-TYPE ALGORITHMS FOR SKEW-SYMMETRIC TOEPLITZ MATRICES9

5. Improved Algorithms
First, we present a 4n2+O(n) Durbin-type algorithm. The idea here is to reduce

the cost of computing RT
k Yk. Here we will use the same notation (but we will replace

Y by Yk, Z by Zk and W by Wk) we used when we derived the �rst two algorithms.
Now consider

RT
k Yk =

[
RT

k−2 ST
k−2

] [
Zk−2

Wk−2

]
.

But, Zk−2 = Yk−2 + Jk−2Yk−2Wk−2. Thus,

RT
k Yk = RT

k−2Yk−2 + (T2 −RT
k−2Yk−2)W 2

k−2.

Therefore, we can use the previously computed values of W and RT Y to compute
the new value of RT Y which we will call E.

Algorithm 3 (Classic Durbin-Type Algorithm):
Input: n (an even positive integer), σ = [σ1 σ2 · · · σn+1]T (a generator of a

real skew-symmetric Toeplitz matrix Tn+2).
Y2 =

[−σ2/σ1 −σ3/σ1

1 σ2/σ1

]

T2 =
[

0 σ1

−σ1 0

]

R2 =
[

σ1 σ2

σ2 σ3

]

E = RT
2 Y2

W =
[

0 0
0 0

]

for k = 2, · · · , n− 2, step 2
Let Jk be the counteridentity matrix of order k.

Rk =




σ1 σ2

σ2 σ3

...
...

σk σk+1




Sk =
[

σk+1 σk+2

σk+2 σk+3

]

E = E + (T2 − E)W 2

Pk = (T2 − E)−1

W = Pk(Sk + RT
k JkYk)

Zk = Yk + JkYkW

Yk+2 =
[

Zk

W

]

end for
Output: Yn (the solution of TnYn = Rn, where Tn is the skew-symmetric

Toeplitz matrix whose generator is [σ1 σ2 · · · σn−1]T and Rn is as before).
It is easy to see that the running time of the previous algorithm is

∑n−2
k=2 16k =

4n2 + O(n).
Algorithm 4 (Improved Classic Levinson-Type Algorithm):
Input: n (an even positive integer), b = [b1 b2 · · · bn]T , c = [c1 c2 · · · cn]T (b

and c are the vectors of constant terms), σ = [σ1 σ2 · · · σn+1]T (a generator of a
real skew-symmetric Toeplitz matrix Tn+2).

CLASSIC TWO-STEP DURBIN-TYPE AND LEVINSON-TYPE ALGORITHMS FOR SKEW-SYMMETRIC TOEPLITZ MATRICES10

Y2 =
[−σ2/σ1 −σ3/σ1

1 σ2/σ1

]

T2 =
[

0 σ1

−σ1 0

]

X2 =
[−b2/σ1 −c2/σ1

b1/σ1 c1/σ1

]

R2 =
[

σ1 σ2

σ2 σ3

]

E = RT
2 Y2

W =
[

0 0
0 0

]

for k = 2, · · · , n− 2, step 2
Let Jk be the counteridentity matrix of order k.

Rk =




σ1 σ2

σ2 σ3

...
...

σk σk+1




Sk =
[

σk+1 σk+2

σk+2 σk+3

]

E = E + (T2 − E)W 2

Pk = (T2 − E)−1

W = Pk(Sk + RT
k JkYk)

Zk = Yk + JkYkW
Mk = Pk(Ck + RT

k JkXk)
Vk = Xk + JkYkMk

Yk+2 =
[

Zk

W

]

Xk+2 =
[

Vk

Mk

]

end for
Output: Xn (the solution of TnXn = Bn, where Bn = [b, c] and Tn is the

skew-symmetric Toeplitz matrix whose generator is [σ1 σ2 · · · σn−1]T).
It is easy to see that the running time of the previous algorithm is

∑n−2
k=2 32k =

8n2 + O(n). Note that our algorithm solves for two vectors of constant terms at
once. I.e. if we want to solve Tnx = b and Tny = c, where b and c are n × 1 and
n is even, then we solve the system TnZ = D, where D is an n × 2 matrix whose
�rst column is b and second column is c. Then, x will be the �rst column of Z and
y the second column. Solving TnZ = D by our method costs 8n2 + O(n). Thus,
obtaining x costs 4n2 + O(n) and obtaining y has the same cost.

Solving the �rst system we solved in Section ?? by the improved Levinson algo-
rithm (using Octave) gives the same solution we got in that section. All variables
we get here are the same as those in that example except that we do not have Wk

here, and we have the following additional ones.
In the initializations part, we have

R2 =
[−0.58949 −0.45141
−0.45141 −0.53309

]

CLASSIC TWO-STEP DURBIN-TYPE AND LEVINSON-TYPE ALGORITHMS FOR SKEW-SYMMETRIC TOEPLITZ MATRICES11

E =
[−5.5511e− 17 1.8742e− 01
−1.8742e− 01 1.8160e− 17

]

W =
[

0 0
0 0

]
.

When k = 2 in the iterations, we get

E =
[−5.5511e− 17 1.8742e− 01
−1.8742e− 01 1.8160e− 17

]

W =
[−0.66695 −0.49387

1.00000 0.66695

]
.

When k = 4 in the iterations, we get

E =
[−5.8234e− 17 2.2553e− 01
−2.2553e− 01 1.5619e− 17

]

W =
[−0.63828 −0.42637

1.00000 0.63828

]
.

6. An Octave Program for the Improved Levinson-Type Algorithm
We note that we do not have to compute the counteridentity matrix, J , in the

program below. We can write the program without it. We included it in the
program for the sake of clarity. We note also that the program can be shortened
if we use Octave's built-in functions and operators. But, we decided to write it as
above to make it easy to understand for readers who do not know Octave.

#
1;
function J = Counter(n)
usage: J = Counter(n)
description: Creates the counteridentity matrix of order n.
J=zeros(n);
for i=1:n

J(i,n-i+1)=1;
endfor;
endfunction
function Z = solve(sigma,D)
description : Solves the system TnZ = D, where n is even and
Tn is a real skew-symmetric Toeplitz matrix generated by
[sigma(1) sigma(2) · · · sigma(n− 1)]T .
The input sigma = [sigma(1) sigma(2) · · · sigma(n + 1)]T

is the generator of Tn+2. It is an (n + 1)× 1 column vector.
The input D is an n× 2 matrix (matrix of constant terms).
usage: Z = solve(sigma,D)
n = rows(sigma)- 1;
b = D(:,1); # b is the �rst column of D.
c = D(:,2); # c is the second column of D.
Y = [-sigma(2)/sigma(1),-sigma(3)/sigma(1);1,sigma(2)/sigma(1)];
T2 = [0,sigma(1);-sigma(1),0];

CLASSIC TWO-STEP DURBIN-TYPE AND LEVINSON-TYPE ALGORITHMS FOR SKEW-SYMMETRIC TOEPLITZ MATRICES12

X = [-b(2)/sigma(1),-c(2)/sigma(1);b(1)/sigma(1),c(1)/sigma(1)];
R = [sigma(1),sigma(2);sigma(2),sigma(3)];
E = R′ * Y; # The prime is used in Octave for transpose.
W = zeros(2,2); # W is the 2× 2 zero matrix.
for k = 2:n-2

if (rem(k, 2) != 0)
continue;

endif;
R = zeros(k,2);
for i=1:k

R(i,1)=sigma(i);
R(i,2) = sigma(i+1);

endfor;
S = zeros(2,2);
S(1,1) = sigma(k+1);
S(1,2) = sigma(k+2);
S(2,1) = sigma(k+2);
S(2,2) = sigma(k+3);
C = zeros(2,2);
C(1,1) = b(k+1);
C(2,1) = b(k+2);
C(1,2) = c(k+1);
C(2,2) = c(k+2);
J = Counter(k);
E = E + (T2 - E) * W * W;
P = inv(T2 - E);
W = P * (S + R′ * J * Y);
Z = Y + J * Y * W;
M = P * (C + R′ * J * X);
V = X + J * Y * M;
Y = [Z;W];
X = [V;M];

endfor;
Z = X;
endfunction;

References
[1] I. T. Abu-Jeib and T. S. Shores, On properties of matrix I(−1) of Sinc methods, New Zealand

J. Math. 32 (2003) 1-10.
[2] D. Delsarte and Y. Genin, The split Levinson algorithm, IEEE Transactions on Acoustics

Speech and Signal Processing ASSP-34 (1986) 470-477.
[3] P. Gierke, Ph.D. thesis, University of Nebraska-Lincoln, 1999.
[4] G. Heinig and K. Rost, Fast algorithms for skewsymmetric Toeplitz matrices, Toeplitz ma-

trices and singular integral equations (Pobershau, 2001) 193-208, Oper. Theory Adv. Appl.,
135, Birkhäuser, Basel, 2002.

[5] J. Lund and K. Bowers, Sinc Methods for Quadrature and Di�erential Equations, SIAM,
Philadelphia, 1992.

[6] A. Melman, The even-odd split Levinson algorithm for Toeplitz systems, SIAM J. Matrix
Anal. Appl. 23, 1 (2001) 256-270.

CLASSIC TWO-STEP DURBIN-TYPE AND LEVINSON-TYPE ALGORITHMS FOR SKEW-SYMMETRIC TOEPLITZ MATRICES13

[7] A. Melman, A two step even-odd split Levinson algorithm for Toeplitz systems, Linear Alge-
bra Appl. 338 (2001) 219-237.

[8] F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Springer-Verlag, New
York, 1993.

[9] F. Stenger, Collocating convolutions, Math. Comp. 64 (1995) 211-235.
[10] F. Stenger, Matrices of sinc methods, J. Comput. Appl. Math. 86 (1997) 297-310.

Department of Mathematics and Computer Science, Fenton Hall, SUNY College
at Fredonia, Fredonia, NY 14063, USA

E-mail address: abu-jeib@cs.fredonia.edu

